Sorghum vulgare Plus Azospirillum lipoferum and Rhizobium tropici with NH4NO3 at 50% Reduce N2O Releasing

Volume: 10 | Issue: 2 | Year 2024 | Subscription
International Journal of Environmental Chemistry
Received Date: 07/10/2024
Acceptance Date: 07/21/2024
Published On: 2024-09-26
First Page: 14
Last Page: 19

Journal Menu

By: Juan Manuel Sánchez-Yáñez, Martha Elizabeth Vargas Hernández, Dora Alicia Pérez-González, and Roberto Guerra-Gonzalez

1Professor, Environmental Microbiology Laboratory, Chemical Biological Research Institute, Ed-B3, C.U., EdB3, University City, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Col. Felicitas del Rio, CP. 58030, Morelia, Michoacán
2Graduate Student, Environmental Microbiology Laboratory, Chemical Biological Research Institute, Ed-B3, C.U., EdB3, University City, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Col. Felicitas del Rio, CP. 58030, Morelia, Michoacán
3Research Profesor, Department of Chemical Engineering
Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Mújica S/N, Col. Felicitas del Rio, CP. 58030, Morelia, Michoacán, México
4FES, Zaragoza, Universidad Nacional Autónoma de México Av. Guelatao 66, Ejercito de Oriente, INDECO, ISSSTE, Iztapalapa, 09320, Ciudad de México. CDMX. México.
5Translational Research Institute Dr. Tetsuya Ogura Fuji. A.C. 58,000, Morelia, Michoacán, México.

Abstract

Sorghum vulgare, a gramineae of commercial value, requires NH4NO3 for healthy growth, that in excess causes loss of soil productivity and the release of N2O, a greenhouse gas that contributes to global warming. An alternative solution to reduce and optimize NH4NO3 with: Azospirillum lipoferum and Rhizobium tropici. The objective of this work was: to analyze the effect of A. lipoferum and R. tropici 50%. For this, A. lipoferum and R. tropici were inoculated in S. vulgare in a hydroponic system in Leonard jars, under a randomized block experimental design with 5 treatments and 5 repetitions each. The response variables were percentage (%) of germination, aerial and root phenology; plant height and root length, biomass: aerial fresh weight and radical fresh weight, experimental data were analyzed by Tukey. The results showed 100% germination of S. vulgare with A. lipoferum and R. tropici statistically different numerical value compared to the 75% S. vulgare used as relative control (RC) with 100% NH4NO3 not inoculated. S. vulgare to seedling aerial dry weight (ADW) with A. lipoferum and R. tropici was 0.90g statistically different numerical value compared to 0.35g ADW of S. vulgare used as RC. At the flowering level, S. vulgare with A. lipoferum and R. tropici reached 3.17g of radical dry weight (RDW), a statistically different numerical value compared to the 1.59g of RDW of S. vulgare with 100% NH4NO3 not inoculated. It was evident that the integration of the metabolic capacity of A. lipoferum combined with the analogue of R. tropici, generated sufficient phytohormones to increase the capacity of S. vulgare for maximum uptake of NH4NO3, but non compromising its healthy growth, that avoiding lost soil fertility, contamination of surface water and aquifers, especially the release of N2O greenhouse gas partly responsible for global warming. Concludes that A. lipoferum and R. tropici in S. vulgar, through a synergistic action, optimized NH4NO to 50%.

Loading

Citation:

How to cite this article: Juan Manuel Sánchez-Yáñez, Martha Elizabeth Vargas Hernández, Dora Alicia Pérez-González, and Roberto Guerra-Gonzalez, Sorghum vulgare Plus Azospirillum lipoferum and Rhizobium tropici with NH4NO3 at 50% Reduce N2O Releasing. International Journal of Environmental Chemistry. 2024; 10(2): 14-19p.

How to cite this URL: Juan Manuel Sánchez-Yáñez, Martha Elizabeth Vargas Hernández, Dora Alicia Pérez-González, and Roberto Guerra-Gonzalez, Sorghum vulgare Plus Azospirillum lipoferum and Rhizobium tropici with NH4NO3 at 50% Reduce N2O Releasing. International Journal of Environmental Chemistry. 2024; 10(2): 14-19p. Available from:https://journalspub.com/publication/sorghum-vulgare-plus-azospirillum-lipoferum-and-rhizobium-tropici-with-nh4no3-at-50-reduce-n2o-releasing/

Refrences:

1. Malhi GS, Kaur M, Kaushik P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021; 13: 1318.
2. Panchasara H, Samrat N, Islam N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021; 11: 85.
3. Nardi P, Neri U, Di Matteo G, Trinchera A, Napoli R, Farina R et al. Nitrogen Release from Slow-Release Fertilizers in Soils with Different Microbial Activities. Pedosphere 2018; 28: 332–340.
4. Chojnacka K, Moustakas K, Witek-Krowiak A. Bio-based fertilizers: A practical approach towards circular economy. Bioresource Technology 2020; 295: 122223.
5. Grzyb A, Wolna-Maruwka A, Niewiadomska A. The Significance of Microbial Transformation of Nitrogen Compounds in the Light of Integrated Crop Management. Agronomy 2021; 11: 1415.
6. Abd-Alla MH, Al-Amri SM, El-Enany A-WE. Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture 2023; 13: 2092.
7. Fiori AK, De Oliveira Gutuzzo G, Sanzovo AWDS, De Souza Andrade D, De Oliveira ALM, Rodrigues EP. Effects of Rhizobium tropici azide-resistant mutants on growth, nitrogen nutrition and nodulation of common bean (Phaseolus vulgaris L.). Rhizosphere 2021; 18: 100355.
8. Fipke GM, Conceição GM, Grando LFT, Ludwig RL, Nunes UR, Martin TN. Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing. Ciência E Agrotecnologia 2016; 40: 522–533.
9. De Almeida Leite R, Martins LC, Ferreira LVDSF, Barbosa ES, Alves BJR, Zilli JE et al. Co-inoculation of Rhizobium and Bradyrhizobium promotes growth and yield of common beans. Applied Soil Ecology 2022; 172: 104356.
10. Santos MS, Nogueira MA, Hungria M. Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira De Ciência Do Solo 2021; 45. doi:10.36783/18069657rbcs20200128.
11. Al-Tammar FK, Khalifa AYZ. Plant growth promoting bacteria drive food security. Brazilian Journal of Biology 2022; 82. doi:10.1590/1519-6984.267257.
12. Fahde S, Boughribil S, Sijilmassi B, Amri A. Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms. Agriculture 2023; 13: 1279.
13. Zhou S, Zhang C, Huang Y, Chen H, Yuan S, Zhou X. Characteristics and Research Progress of Legume Nodule Senescence. Plants 2021; 10: 1103.
14. Sanchez-Yañez, Juan. (2007). Breve Tratado de Microbiologia Agrícola: Teoría y Practica.
15. NOM-021-SEMARNAT-2000. 2002. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación, México.
16. Moretti LG [Unesp, Lazarini E [Unesp, Bossolani JW [Unesp, Parente TL [Unesp, Caioni S [Unesp, Araujo RS et al. Can additional inoculations increase soybean nodulation and grain yield? 2018.https://repositorio.unesp.br/items/fcf3a40e-715f-4ad8-8ea7-87a96e712566.
17. Teixeira IR, Lopes PR, Sousa WS, Da S Teixeira GC. Response of common bean to Rhizobium reinoculation in topdressing. Revista Brasileira De Engenharia Agrícola E Ambiental 2022; 26: 274–282.
18. Supplementary reinoculation in topdressing of Rhizobium tropici in common bean crop: effects on nodulation, morphology, and grain yield. Figshare. 2023.https://tandf.figshare.com/articles/dataset/Supplementary_reinoculation_in_topdressing_of_i_Rhizobium_tropici_i_in_common_bean_crop_effects_on_nodulation_morphology_and_grain_yield/17696596.
19. Reinoculation of topdressing Rhizobium tropici combined or not with Azospirillum brasilense in common bean. https://ouci.dntb.gov.ua/en/works/9GrgGNWl/.
20. Moreira LP, Oliveira APS, De B Ferreira EP, De Brito Ferreira Cnpaf LPMUAPSO Instituto Federal Goiano, Ceres-Go; Enderson Petronio. Nodulation, contribution of biological N2 fixation, and productivity of the common bean (Phaseolus vulgaris L.) inoculated with rhizobia isolates. 2017.https://www.sidalc.net/search/Record/dig-alice-doc-1078138/Details.
21. Schossler JH, Meert L, Rizzardi DA, Michalovicz L. Componentes de rendimento e produtividade do feijoeiro comum submetido à inoculação e coinoculação. Dialnet. 2016.https://dialnet.unirioja.es/servlet/articulo?codigo=6115671.