By: Prof. Gizachew Diga Milki
Associate Professor, Department of Physics, Jimma University,Ethiopia
ZnxFe2-xO3 nanoparticles and composites are a focus area of research in Nanotechnology, biotechnology and material engineering. The functional properties of these nanomaterials depend on the scientific method of synthesizing and characterizing procedure. In this study, greater attention is invested on Biological synthesis of ZnxFe2-xO3 nanoparticles and nanocomposite. For in vivo or in vitro study, properties such as biocompatibility, reactivity, bio sensitivity, photosensitivity, and biodegradability are considered. Besides, the Ferrofluid and nanofluid of ZnxFe2-xO3 nanostructures are investigated for solar cells and photoconductors. More emphasis is given to the roles of nanotechnology in transforming ZnxFe2-xO3 nanoparticles to photo catalytic activity. In addition, the impact of nanotechnology and surface effect on the Photo catalytic activity of nanoparticles is discussed. Moreover, the significance of ZnxFe2-xO3 nanoparticles is highlighted for the applications in photovoltaic and solar cells.
Key Words: Biological method, Magnetic nanoparticles, Nanosensors, Nanotechnology, photo catalytic activity.
Citation:
Refrences:
1. Teja AS, Koh PY. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater. 2009;55(2):22-45
2. Abd-Elsalam KA, Prasad R, Alghuthaymi MA, Ayyadurai N, Kumar A. Nanoparticles in modern antimicrobial and antiviral applications. Nanotechnology in Life Sciences. 2019. p. 1–20. ISSN: 2523-8027.
3. Amjad, M., Khan, M. I., Alwadai, N., Irfan, M., Albalawi, H., Almuqrin, A. H., Almoneef, M. M., & Iqbal, M. Photovoltaic Properties of ZnO Films Co-Doped with Mn and La to Enhance Solar Cell Efficiency. Nanomaterials, (2021)12 (7), 1057.
https://doi.org/10.3390/nano12071057
4. Mustapha S, Elabor R, Tijani JO, Egbosiuba TC, Amigun AT, Salihu AM, Sumaila A, Usman RA, Gwadabe NK, Abdulkareem SA, Ndamitso MM. Green magnetic nanoparticles for photocatalytic applications. InGreen Magnetic Nanoparticles (GMNPs) 2024 Jan 1 (pp. 377-404). Elsevier.
5. Ashok, A., Kennedy, L. J., & Vijaya, J. J. Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil. Journal of Alloys and Compounds, (2019). 780, 816-828.
https://doi.org/10.1016/j.jallcom.2018.11.390
6. Lassoued A. Synthesis and characterization of Zn-doped α-Fe2O3 nanoparticles with enhanced photocatalytic activities. Journal of Molecular Structure. 2021 Sep 5;1239:130489.
7. Joseph Govan and Yuri K. Gun’ko. Recent advances in the application of magnetic nanoparticles as a support for homogeneous catalysts. J. nanomaterials. 2014, 4, 222-24.
8. Clastin Indira A, Muthaian JR, Pandi M, Mohammad F, Al-Lohedan HA, Soleiman AA. Photocatalytic Efficacy and Degradation Kinetics of Chitosan-Loaded Ce-TiO2 Nanocomposite towards for Rhodamine B Dye. Catalysts. 2023 Dec 11;13(12):1506.
9. Melinte V, Stroea L, Chibac-Scutaru AL. Polymer nanocomposites for photocatalytic applications. Catalysts. 2019 Nov 24;9(12):986.
10. Sujatha K, Seethalakshmi T, Sudha AP, Shanmugasundaram OL. Photocatalytic activity of pure, Zn doped and surfactants assisted Zn doped SnO2 nanoparticles for degradation of cationic dye. Nano-Structures & Nano-Objects. 2019 Apr 1;18:100305
11. Kumar P, Deng ZY, Tsai PY, Chiu CY, Lin CW, Chaudhary P, Huang YC, Chen KL. Enhanced visible-light photocatalytic activity of Fe3O4@ MoS2@ Au nanocomposites for methylene blue degradation through Plasmon-Induced charge transfer. Separation and Purification Technology. 2024 Aug 21;342:126988.
12. Zhang Y, Nayak TR, Hong H, Cai W. Biomedical applications of zinc oxide nanomaterials. Curr Mol Med. 2019;19(1):3-22.
13. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LM, Sarma SJ, Brar SK. Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnology for Environmental Engineering. 2017 Dec;2:1-21.
14. Hasan pour A, Niyaifar M, Asan M, Amighian J. Synthesis and characterization of Fe3O4 and ZnO nanocomposites by the sol–gelmethod. Journal of magnetism and magnetic materials. 2013 May 1;334:41-4.
15. Kamali M, Xue Y, Khalaj M, Laats B, Teunckens R, Verbist M, Costa MEV, Capela I, Appels L, Dewil R. ZnO/γ-Fe2O3/Bentonite: An Efficient Solar-Light Active Magnetic Photocatalyst for the Degradation of Pharmaceutical Active Compounds. Molecules. 2022 May 10;27(10):3050. doi: 10.3390/molecules27103050.
16. Yang S, Jiang JT, Xu CY, Wang Y, Xu YY, Cao L, Zhen L. Synthesis of Zn (II)-doped magnetite leaf-like nanorings for efficient electromagnetic wave absorption. Scientific Reports. 2017 Apr 3;7(1):45480.
17. Simfukwe J, Mapasha RE, Braun A, Diale M. Exploring the stability and electronic properties of Zn-doped hematite surfaces for photoelectrochemical water splitting. Journal of Physics and Chemistry of Solids. 2020 Jan 1;136:109159.
18. Zhang Y, Su P, Weathersby D, Zhang Q, Zheng J, Fan R, Zhang J, Dai Q. Synthesis of γ-Fe2O3-ZnO-biochar nanocomposites for Rhodamine B removal. Applied Surface Science. 2020 Jan 31;501:144217.
19. Kasparis, G., Sangnier, A. P., Wang, L., Efstathiou, C., LaGrow, A. P., Sergides, A., Wilhelm, C., & Kim Thanh, N. T. Zn doped iron oxide nanoparticles with high magnetization and Photothermal efficiency for cancer treatment. Journal of Materials Chemistry. B, (2022). 11(4), 787-801. https://doi.org/10.1039/d2tb01338j
20. Xiao Hui Guo, Huimin Yang, and Gui Bao Guo One-pot synthesis of Iron oxide doped carbon microsphere composites. Material science forum. 2018. Vol. 932:76-80. DOI: 10: 4028/www.scientific net/MSF.932.76.