By: Haydar U. Zaman
Assiatant Professor, Department of Physics, National University of Bangladesh and Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, P.O. Box-3787, Savar, Dhaka, Bangladesh
Polymer nanocomposites (PNCs) are known for being an effective method to impart materials with exceptional properties that cannot be achieved by the individual components on their own.Utilizing the interfaces between the two phases of nanoscale compounds with high specific surface areas is advantageous for creating composites that incorporate nanofillers. The primary difficulty with nanocomposites lies in managing the interfacial interactions between the two phases. Polymer nanocomposites have gained significant research attention in recent years because of their promising potential in various electric, magnetic, optical, and biological applications. Over conventional materials, polymeric nanocomposites provide a number of advantages, such as light weighting, flexibility, processing simplicity, and low cost of the finished product. Biomedical applications have become a top study area among the aforementioned disciplines due to the significance of medical technology, which has raised the criteria for biomedical materials. Demand for new materials with specific properties is high. Biomedical polymer-silicate nanocomposites hold great potential for advancing biomedical applications, including diagnostic and therapeutic devices, tissue regeneration, drug delivery systems, and various biotechnologies inspired by biology but with limited direct ties to biomedicine. A deep understanding of polymer-nanoparticle interactions is essential to regulate the structure-property relationships of materials, ensuring they function effectively within the chemical, physical, and biological limitations imposed by their intended applications. This review compiles the latest published strategies for designing and developing polymer-silicate nanocomposites, including clay-based silicate nanoparticles and bioactive glass nanoparticles, for various biological applications. Emerging application areas are being explored, and recent advancements in biotechnological and biomedical nanocomposites are highlighted.
Keywords: Nanocomposites, polymer, silicates, clay, biopolymer, mechanical properties, biomedical applications
Citation:
Refrences:
1. Sinha Ray S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Accounts of Chemical Research. 2012;45:1710-1720.
2. Liff SM, Kumar N, McKinley GH. High-performance elastomeric nanocomposites via solvent-exchange processing. Nature materials. 2007 Jan 1;6(1):76-83.
3. Gaharwar AK, Dammu SA, Canter JM, Wu CJ, Schmidt G. Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly (ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules. 2011 May 9;12(5):1641-50.
4. Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer. 2008;49:3187-3204.
5. Goenka S, Sant V, Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release. 2014 Jan 10;173:75-88.
6. Mitragotri S, Lahann J. Physical approaches to biomaterial design. Nature Materials. 2009;8:15-23.
7. Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter. 2010;6(11):2364-71.
8. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science. 2008 Jul 18;321(5887):385-8.
9. Vaia R, Baur J. Adaptive composites. Science. 2008 Jan 25;319(5862):420-1.
10. Dundigalla A, Lin‐Gibson S, Ferreiro V, Malwitz MM, Schmidt G. Unusual multilayered structures in poly (ethylene oxide)/laponite nanocomposite films. Macromolecular rapid communications. 2005 Feb 3;26(3):143-9.
11. Williams DF. On the nature of biomaterials. Biomaterials. 2009 Oct 1;30(30):5897-909.
12. Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009 Nov 26;462(7272):426-32.
13. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002 Feb 8;295(5557):1014-7.
14. Webber MJ, Khan OF, Sydlik SA, Tang BC, Langer R. A perspective on the clinical translation of scaffolds for tissue engineering. Annals of biomedical engineering. 2015 Mar;43:641-56.
15. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Advanced materials. 2006 Jun 6;18(11):1345-60.
16. Hirst AR, Escuder B, Miravet JF, Smith DK. High‐tech applications of self‐assembling supramolecular nanostructured gel‐phase materials: from regenerative medicine to electronic devices. Angewandte Chemie International Edition. 2008 Oct 6;47(42):8002-18.
17. Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F. Emerging applications of stimuli-responsive polymer materials. Nature materials. 2010 Feb;9(2):101-13.
18. Kohane DS, Langer R. Polymeric biomaterials in tissue engineering. Pediatr Res. 2008;63:487-491.
19. Fratzl P, Weinkamer R. Nature’s hierarchical materials. Progress in Materials Science. 2007;52:1263-1334.
20. Gao H, Ji B, Jäger IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the national Academy of Sciences. 2003 May 13;100(10):5597-600.
21. Tang Z, Kotov NA, Magonov S, Ozturk B. Nanostructured artificial nacre. Nature materials. 2003 Jun 1;2(6):413-8.
22. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annual review of materials science. 1998 Aug;28(1):271-98.
23. Wagner HD. Paving the way to stronger materials. Nature Nanotechnology. 2007;2:742-744.
24. Vaia RA, Wagner HD. Framework for nanocomposites. Materials Today. 2004;7:32-37.
25. Okada A, Usuki A. Twenty years of polymer‐clay nanocomposites. Macromolecular Materials and Engineering. 2006;291:1449-1476.
26. Vaia RA, Giannelis EP. Polymer nanocomposites: status and opportunities. MRS Bulletin. 2001;26:394-401.
27. Faucheu J, Gauthier C, Chazeau L, Cavaille JY, Mellon V, Lami EB. Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: short review and recent advances. Polymer. 2010 Jan 6;51(1):6-17.
28. Xu W, Raychowdhury S, Jiang DD, Retsos H, Giannelis EP. Dramatic Improvements in Toughness in Poly (lactide‐co‐glycolide) Nanocomposites. Small. 2008 May;4(5):662-9.
29. Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam JD. Thermal and mechanical characteristics of poly (L-lactic acid) nanocomposite scaffold. Biomaterials. 2003 Jul 1;24(16):2773-8.
30. Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK, Nam JD. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials. 2005 Jun 1;26(16):3165-72.
31. Tsivintzelis I, Marras SI, Zuburtikudis I, Panayiotou C. Porous poly (l-lactic acid) nanocomposite scaffolds prepared by phase inversion using supercritical CO2 as antisolvent. Polymer. 2007 Oct 5;48(21):6311-8.
32. Ozkoc G, Kemaloglu S, Quaedflieg M. Production of poly (lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching. Polymer Composites. 2010 Apr;31(4):674-83.
33. Krikorian V, Pochan DJ. Poly (L-lactic acid)/layered silicate nanocomposite: fabrication, characterization, and properties. Chemistry of Materials. 2003;15:4317-4324.
34. Zhuang H, Zheng JP, Gao H, De Yao K. In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite. Journal of Materials Science: Materials in Medicine. 2007 May;18:951-7.
35. Lewkowitz-Shpuntoff HM, Wen MC, Singh A, Brenner N, Gambino R, Pernodet N, Isseroff R, Rafailovich M, Sokolov J. The effect of organo clay and adsorbed FeO3 nanoparticles on cells cultured on Ethylene Vinyl Acetate substrates and fibers. Biomaterials. 2009 Jan 1;30(1):8-18.
36. Xu R, Manias E, Snyder AJ, Runt J. New biomedical poly (urethane urea)− layered silicate nanocomposites. Macromolecules. 2001 Jan 16;34(2):337-9.
37. Xu R, Manias E, Snyder AJ, Runt J. Low permeability biomedical polyurethane nanocomposites. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003 Jan 1;64(1):114-19.
38. Sinha Ray S, Yamada K, Okamoto M, Ueda K. Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Letters. 2002 Oct 9;2(10):1093-6.
39. Yang, M., Zhang, Z., Hahn, C., Laroche, G., King, M.W. and Guidoin, R.,. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 1999 48(1), pp.13-23.
40. Haraguchi K, Takehisa T. Nanocomposite hydrogels: A unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de‐swelling properties. Advanced Materials. 2002;14:1120-1124.
41. Haraguchi K, Takehisa T, Ebato M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules. 2006 Nov 13;7(11):3267-75.
42. Schmidt G, Nakatani AI, Butler PD, Karim A, Han CC. Shear orientation of viscoelastic polymer− clay solutions probed by flow birefringence and SANS. Macromolecules. 2000 Oct 3;33(20):7219-22.
43. Haraguchi K, Li H-J. Mechanical properties and structure of polymer− clay nanocomposite gels with high clay content. Macromolecules. 2006;39:1898-1905.
44. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N, N-dimethylacrylamide) and clay. Macromolecules. 2003 Jul 29;36(15):5732-41.
45. Haraguchi K, Takehisa T, Fan S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay. Macromolecules. 2002 Dec 31;35(27):10162-71.
46. Gaharwar AK, Schexnailder P, Kaul V, Akkus O, Zakharov D, Seifert S, Schmidt G. Highly extensible bio‐nanocomposite films with direction‐dependent properties. Advanced Functional Materials. 2010 Feb 8;20(3):429-36.
47. Jin Q, Schexnailder P, Gaharwar AK, Schmidt G. Silicate Cross‐Linked Bio‐Nanocomposite Hydrogels from PEO and Chitosan. Macromolecular bioscience. 2009 Oct 8;9(10):1028-35.
48. Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA− clay nanocomposite hydrogels. Macromolecules. 2005 Apr 19;38(8):3482-90.
49.Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G. Large scale structures in nanocomposite hydrogels. Macromolecules. 2005 Mar 22;38(6):2047-9.
51. Harris, J.M. Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications; Plenum Press: New York, NY, USA, 1992; pp. 1-12.
52. Schexnailder P, Loizou E, Porcar L, Butler P, Schmidt G. Heterogeneity in nanocomposite hydrogels from poly (ethylene oxide) cross-linked with silicate nanoparticles. Physical Chemistry Chemical Physics. 2009;11(15):2760-6.
53. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O. Synthesis and properties of polyimide–clay hybrid. Journal of Polymer Science Part A: Polymer Chemistry. 1993 Sep;31(10):2493-8.
54. Cypes SH, Saltzman WM, Giannelis EP. Organosilicate-polymer drug delivery systems: controlled release and enhanced mechanical properties. Journal of controlled release. 2003 Jun 24;90(2):163-9.
55. Wu CJ, Schmidt G. Thermosensitive and dissolution properties in nanocomposite polymer hydrogels. Macromolecular rapid communications. 2009 Sep 1;30(17):1492-7.
56. Lee WF, Chen YC. Effect of bentonite on the physical properties and drug‐release behavior of poly (AA‐co‐PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive. Journal of Applied Polymer Science. 2004;91:2934-2941.
57. Takahashi T, Yamada Y, Kataoka K, Nagasaki Y. Preparation of a novel PEG–clay hybrid as a DDS material: Dispersion stability and sustained release profiles. Journal of controlled Release. 2005 Oct 20;107(3):408-16.
58. Misra SK, Valappil SP, Roy I, Boccaccini AR. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules. 2006 Aug 14;7(8):2249-58.
59. Carlisle E, Alpenfels W: Silicon requirement for normal growth of cartilage in culture. in Fed Proc, FEDERATION AMER SOC EXP BIOL 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3998 USA; 1980. pp. 787-787.
60. Schwarz K. A bound form of silicon in glycosaminoglycans and polyuronides. Proceedings of the National Academy of Sciences. 1973;70:1608-1612.
61. Schwarz K, Milne DB. Growth-promoting effects of silicon in rats. Nature. 1972;239:333-334.
62. Hench LL. Genetic design of bioactive glass. Journal of the European Ceramic Society. 2009;29:1257-1265.
63. Vogel M, Voigt C, Gross UM, Müller-Mai CM. In vivo comparison of bioactive glass particles in rabbits. Biomaterials. 2001 Feb 15;22(4):357-62.
64. Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004 Jul 1;25(15):2941-8.
65. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene‐expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2001 May;55(2):151-7.
66. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006 Mar 1;27(7):964-73.
67. Mansur HS, Costa HS. Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chemical Engineering Journal. 2008;137:72-83.
68. Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR. In vitro evaluation of novel bioactive composites based on Bioglass®‐filled polylactide foams for bone tissue engineering scaffolds. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003 Dec 15;67(4):1401-11.
69. Verrier S, Blaker JJ, Maquet V, Hench LL, Boccaccini AR. PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials. 2004 Jul 1;25(15):3013-21.
70. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM. Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials. 2004 Dec 1;25(27):5857-66.
71. TJ W. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21:1803-10.
72. Misra SK, Ansari T, Mohn D, Valappil SP, Brunner TJ, Stark WJ, Roy I, Knowles JC, Sibbons PD, Jones EV, Boccaccini AR. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly (3-hydroxybutyrate) composites. Journal of the Royal Society Interface. 2010 Mar 6;7(44):453-65.
73. Misra SK, Mohn D, Brunner TJ, Stark WJ, Philip SE, Roy I, Salih V, Knowles JC, Boccaccini AR. Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites. Biomaterials. 2008 Apr 1;29(12):1750-61.
74. Kotela I, Podporska J, Soltysiak E, Konsztowicz KJ, Blazewicz M. Polymer nanocomposites for bone tissue substitutes. Ceramics International. 2009 Aug 1;35(6):2475-80.
75. Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R. Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydrate Polymers. 2010 Jan 20;79(2):284-9.
76. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chemical engineering journal. 2010 Apr 1;158(2):353-61.
77. Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials. 2009 Feb 1;30(5):743-50.
78. Heinemann S, Heinemann C, Bernhardt R, Reinstorf A, Nies B, Meyer M, Worch H, Hanke T. Bioactive silica–collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomaterialia. 2009 Jul 1;5(6):1979-90.
79. Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, Mertig M, Born R, Heinemann S, Hanke T, Worch H. Nanostructural Organization of Naturally Occurring Composites–Part II: Silica-Chitin-Based Biocomposites. Journal of Nanomaterials. 2008 Jan 4.
80. Zhu H, Shen J, Feng X, Zhang H, Guo Y, Chen J. Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds. Materials Science and Engineering: C. 2010 Jan 1;30(1):132-40.
81. Peter M, Kumar PT, Binulal NS, Nair SV, Tamura H, Jayakumar R. Development of novel α-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications. Carbohydrate Polymers. 2009 Nov 17;78(4):926-31.
82. Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites: where two small worlds meet. Science. 2006 Nov 17;314(5802):1107-10.
83. Ray S, Nandi SK, Dasgupta S. Enhanced bone regeneration using Antheraea mylitta silk fibroin and chitosan based scaffold: in-vivo and in-vitro study. Biomedical Materials. 2023 Aug 18;18(5):055019.
84. Winey KI, Vaia RA. Polymer nanocomposites. MRS bulletin. 2007 Apr;32(4):314-22.