Comparative Analysis of Essential Oil Composition and Antioxidant Activity in Carissa carandas L. Fruits from Diverse Indian Regions Using GC-MS Metabolomics

Volume: 10 | Issue: 2 | Year 2024 | Subscription
International Journal of Agrochemistry
Received Date: 09/18/2024
Acceptance Date: 09/21/2024
Published On: 2024-10-01
First Page: 8
Last Page: 16

Journal Menu

By: Meghna Choudhary, Amit Kumar, Nupur Rani, Mani Ratnam, and Jayesh Yadav

1Analyst, Shri Venkateshwara University, Amroha, UP.
2Assistant Professor, Shri Venkateshwara University, Amroha, UP, India.
3Scientist II, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, India.
4QC Officer, Jawaharlal Nehru Technological University, Anantapur, Andhra Pradesh, India.
5Junior Analyst, Singhania University, Rajasthan.

Abstract

Essential oils of Carissa carandas fruits collected from six different regions in India characterized by diverse climatic conditions were investigated for their chemical composition, oil yield diversity and antioxidant activity. The lowest (0.08%) and the highest (19.32%) of each compound in essential oils were demonstrated in fruit samples from Dehradun and Rajasthan, respectively. GC-MS based analysis identified 33 compounds. The main components were limonene, β-myrcene, γ-terpinene, β-linalool, terpinen-4-ol, eugenol, β-element, β-caryophyllene, β-cedrene, isoeugenol, α-humulene, ar-curcumene, germacrene D. Antioxidant activity was tested by DPPH method. Essential oils revealed interesting antioxidant potential; in particular, fruit from Rajasthan, Ghaziabad and Jhansi showed the lowest IC50 value. The results revealed a clear vision of how climatic conditions shape the yield and chemical composition of essential oils, shedding light on their biological activities and potential benefits. The significant outcome deduced C. carandas as a new bio-resource for valuable medicinal and nutraceutical products.

Loading

Citation:

How to cite this article: Meghna Choudhary, Amit Kumar, Nupur Rani, Mani Ratnam, and Jayesh Yadav, Comparative Analysis of Essential Oil Composition and Antioxidant Activity in Carissa carandas L. Fruits from Diverse Indian Regions Using GC-MS Metabolomics. International Journal of Agrochemistry. 2024; 10(2): 8-16p.

How to cite this URL: Meghna Choudhary, Amit Kumar, Nupur Rani, Mani Ratnam, and Jayesh Yadav, Comparative Analysis of Essential Oil Composition and Antioxidant Activity in Carissa carandas L. Fruits from Diverse Indian Regions Using GC-MS Metabolomics. International Journal of Agrochemistry. 2024; 10(2): 8-16p. Available from:https://journalspub.com/publication/comparative-analysis-of-essential-oil-composition-and-antioxidant-activity-in-carissa-carandas-l-fruits-from-diverse-indian-regions-using-gc-ms-metabolomics/

Refrences:

1. Research in pharmacy and health sciences. 2017 Apr-Jun;3(2):294–302.
2. Sawant BR, Desai UT, Ranpise SA, More TA, Sawant SV. Genotypic and phenotypic variability in Karonda (Carissa carandas L.). J Maharashtra Agric Univ. 2002;27(3):266–268.
3. Badami S, Gupta MK, Suresh B. Antioxidant activity of the ethanolic extract of Striga orobanchioides. J Ethnopharmacol. 2003;85(2):227–30.
4. Natarajan D, Britto JS, Nagamurugan NS, Mohanasundari C, Perumal G. Antibacterial activity of Euphorbia fusiformis, a rare medicinal herb. J Ethnopharmacol. 2005;102(1):123–6.
5. Anonymous. ICAR-IIHR Annual Report. Bengaluru: ICAR-Indian Institute of Horticultural Research; 2014–2015. p. 28, 88.
6. Das SC, Prakash J, Deb AK, Biswas T. Medicinal value of underutilized fruits in hilly Tripura. Acta Hortic. 2013;972:135–41.
7. Lindsay EA, Berry Y, Jamie JF. Antibacterial compounds from Carissa lanceolata R. Br. Phytochemistry. 2000;55(3):403–6. Available from: https://doi.org/10.1016/S0031-9422(00)00343-5.
8. Feyissa D, Melaku Y. Phytochemical, antibacterial and antioxidant studies of the leaves of Carissa spinarum. Int J Pharm Chem Sci. 2016;7:25–30.
9. Hettiarachchi DS, Locher C, Longmore RB. Antibacterial compounds from the root of the indigenous Australian medicinal plant Carissa lanceolata R. Br Nat Prod Res. 2011;25(12):1388–95. Available from: https://doi.org/10.1080/14786410802267668.
10. Parvin N. Phytochemical screening, antinociceptive, anthelmintic and cytotoxicity studies of the leaves of Carissa carandas Linn. (Family Apocynaceae). Int J Sci Rep. 2018;4(3):119–23. Available from: http://dx.doi.org/10.18203/issn.2454-2156.
11. (Family, Apocynaceae). Int J Sci Rep. 2018, 4, 119–123, http://dx.doi.org/10.18203/issn.2454–2156.
12. Kaunda JS, Zhang YJ. The genus Carissa: An ethnopharmacological, phytochemical, and pharmacological review. Nat Prod Bioprospect. 2017;7(3):181–99. Available from: https://doi.org/10.1007/s13659-017-0123-z.
13. Chauhan AM, Tanwar BE, Arneja IN. Influence of processing on physiochemical, nutritional, and phytochemical composition of Carissa spinarum (karonda) fruit. Asian J Pharm Clin Res. 2015;1:254–9.
14. The National Academies. Lost Crops of Africa: Volume III Fruits. Washington, DC: The National Academies Press; 2008. Available from: https://doi.org/10.17226/11879.
15. Moodley R, Chenia H, Jonnalagadda SB, Koorbanally N. Antibacterial and anti-adhesion activity of the pentacyclic triterpenoids isolated from the leaves and edible fruits of Carissa macrocarpa. J Med Plant Res. 2011;5(18):4851–8.
16. Fagbemi KO, Aina DA, Olajuyigbe OO. Soxhlet extraction versus hydrodistillation using the clevenger apparatus: A comparative study on the extraction of a volatile compound from Tamarindus indica seeds. Sci World J. 2021;1:1–8.
17. Tripathi T, Singh A, Dhobi M, Kalaiselvan V. Comparative metabolic profiling, isolation of alkylated phenols and antioxidant activity of roots of Plumbago species using GC-MS and NMR-based metabolomics study. Nat Prod Res. 2022;36(23):6126–31.
18. Beyene BB, Alem FA, Ayana MT. Determination of antioxidant and antibacterial activities of leaf extracts of Plumbago zeylanica (Amira). Cogent Chem. 2020;6(1):1831715.
19. Farhadi N, Babaei K, Farsaraei S, Moghaddam M, Pirbalouti AG. Changes in essential oil compositions, total phenol, flavonoids, and antioxidant capacity of Achillea millefolium at different growth stages. Ind Crops Prod. 2020;152:112570.
20. Mohammedi H, Mecherara-Idjeri S, Hassani A. Variability in essential oil composition, antioxidant and antimicrobial activities of Ruta montana L. collected from different geographical regions in Algeria. J Essent Oil Res. 2020;32(1):88–101.
21. Elbali W, Djouahri A, Djerrad Z, Saka B, Aberrane S, Sabaou N, Baaliouamer A, Boudarene L. Chemical variability and biological activities of Marrubium vulgare L. essential oil depending on geographic variation and environmental factors. J Essent Oil Res. 2018;30(6):470–87.
22. Nooshadokht M, Mirzaei M, Sharifi I, Sharifi F, Lashkari M, Amirheidari B. In silico and in vitro antileishmanial effects of gamma-terpinene: Multifunctional modes of action. Chem Biol Interact. 2022;361:109957.
23. Bordini EAF, Tonon CC, Francisconi RS, Magalhães FAC, Huacho PMM, Bedran TLS, Spolidorio DP. Antimicrobial effects of terpinen-4-ol against oral pathogens and its capacity for the modulation of gene expression. Biofouling. 2018;34(7):815–25.
24. Zhang Y, Feng R, Li L, Zhou X, Jia R, Yin Z. The antibacterial mechanism of terpinen-4-ol against Streptococcus agalactiae. Curr Microbiol. 2018;75(9):1214–20.
25. Ulanowska M, Olas B. Biological properties and prospects for the application of eugenol—A review. Int J Mol Sci. 2021;22(7):3671.
26. Liu J, Chen C, Wan X, Yao G, Bao S, Wang F. Identification of the sesquiterpene synthase AcTPS1 and high production of (–)-germacrene D in metabolically engineered Saccharomyces cerevisiae. Microbial Cell Factories. 2022;21(1):1–14.
27. Francomano F, Caruso A, Barbarossa A, Fazio A, La Torre C, Ceramella J, Sinicropi MS. β-Caryophyllene: A sesquiterpene with countless biological properties. Appl Sci. 2019;9(24):5420.
28. Chen X, Huang C, Li K, Liu J, Zheng Y, Feng Y, Kai GY. Recent advances in biosynthesis and pharmacology of β-elemene. Phytochem Rev. 2023;22(1):169–86.
29. An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct. 2021;12(21):10370–89.
30. Baldissera MD, Grando TH, Souza CF, Gressler LT, Stefani LM, da Silva S, Monteiro SG. In vitro and in vivo action of terpinen-4-ol, γ-terpinene and α-terpinene against Trypanosoma evansi. Exp Parasitol. 2016;162:43–8.
31. de Christo Scherer MM, Marques FM, Figueira MM, Peisino MCO, Schmitt EFP, Kondratyuk TP, Fronza M. Wound healing activity of terpinolene and α-phellandrene by attenuating inflammation and oxidative stress in vitro. J Tissue Viability. 2019;28(2):94–99.
32. de Lacerda Leite GM, de Oliveira Barbosa MP, Lopes MPJ, de Araújo Delmondes G, Bezerra DS, Araújo IM, Kerntof MR. Pharmacological and toxicological activities of α-humulene and its isomers: A systematic review. Trends Food Sci Technol. 2021;115:255–74.
33. AlShebly MM, AlQahtani FS, Govindaraja M, Gopinath K, Vijayan P, Benelli G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol Environ Saf. 2017;137:149–157.
34. Hajizadeh MR, Maleki H, Barani M, Fahmidehkar MA, Mahmoodi M, Torkzadeh-Mahani M. in vitro cytotoxicity assay of D-limonene niosomes: an efficient nano-carrier for enhancing solubility of plant-extracted agents. Res Pharm Sci. 2019;14(5):448.
35. GuoY, Baschieri A, Amorati R, Valgimigli L. Synergic antioxidant activity of γ- terpinene with phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem. 2021;345:128468.
36. Aslam S, Younis W, Malik MMS, Jahan SE, Alamgeer AM, Uttra MR. Pharmacological evaluation of anti-arthritic potential of terpinen-4-ol using in vitro and in vivo assays. Inflammopharmacol. 2022;30(3):945–959.
37. Da Silva FFM, Monte FJsQ, de Lemos TLG, Do Nascimento PGG, de Medeiros Costa AK, De Paiva LMM. Eugenol derivatives: Synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem Central J. 2018;12:1–9.
38. Chandra S, Skalani S, Kandari SA. Nutritional evaluation, antimicrobial activity and phytochemical screening of wild edible fruit (Carissa opaca). Int Res J Pharm. 2011;2:217–21.