By: Raju Ramrao Kulkarni and A.B. Vawhale
1Student, Department of Civil Engineering, Shreeyash College of engineering, Aurangabad, Maharashtra, India
2Assistant Professor, Civil Engineering Department, Shreeyash. College of engineering Aurangabad, Maharashtra, India
Bridge structures are vital for improving transportation in urban and suburban areas by offering routes
that reduce traffic congestion. As urbanization accelerates in many metropolitan cities across India,
the necessity for such infrastructure becomes increasingly important. This research aims to explore the
structural behavior of flyover bridges, specifically focusing on 30-meter I-girder and 30-meter boxgirder bridge segments under various loading conditions, in compliance with Indian Road Congress
(IRC) standards. The bridge girders are modeled using plate elements in the STAAD Pro software. The
study examines the structural performance of the girders by analyzing axial forces, shear forces,
bending moments, and principal stresses under both dead and live loads. The design considerations
include using reinforced cement concrete and prestressed concrete for the deck slab and girders, while
piers and foundations are constructed with reinforced cement concrete. Prestressing techniques are
utilized to enhance the structural performance, particularly to withstand maximum tensile stresses
effectively.
Citation:
Refrences:
1. Housner GW. The dynamic behavior of water tanks. Bull Seismol Soc Am. 1963;53(2):381–387.
doi:10.1785/BSSA0530020381.
2. El Damatty AA, Korol RM, Mirza FA. Stability of imperfect steel conical tanks under hydrostatic
loading. J Struct Eng. 1997;123(6):703–712. doi:10.1061/(ASCE)0733-9445(1997)123:6(703).
3. El Damatty AA, EI-Attar MB, Korol RM. Inelastic stability of conical tanks. J Thin-Walled Struct.
1998;31(4):343–359. doi:10.1016/S0263-8231(98)00020-2.
4. El Damatty AA, Marroquin EG, Attar ME. Behavior of stiffened liquid-filled conical tanks. J ThinWalled Struct. 2001;39(4):353–373. doi:10.1016/S0263-8231(01)00005-2.
5. El Damatty AA, Marroquin E. Design procedure for stiffened water-filled steel conical tanks. J
Thin-Walled Struct. 2002;40(3):263–282. doi:10.1016/S0263-8231(01)00052-0.
6. Sweedan AMI, El Damatty AA. Experimental and analytical evaluation of the dynamic
characteristics of conical shells. J Thin-Walled Struct. 2002;40(5):465–486. doi:10.1016/S0263-
8231(01)00070-2.
7. Sweedan AMI, EI Damatty AA. Equivalent models of pure conical tanks under vertical ground
excitation. J Struct Eng. 2005;131(5):725–733. doi:10.1061/(ASCE)0733-9445(2005)131:5(725).
8. EI Damatty AA, Saafana MS, Sweedan AMI. Dynamic characteristics of combined conicalcylindrical shells. J Thin-Walled Struct. 2005;43(9):1380–1397. doi:10.1016/j.tws.2005.04.002.
9. EI Damatty AA, Saafana MS, Sweedan AMI. Experimental study conducted on a liquid-filled
combined conical tank model. J Thin-Walled Struct. 2005;43(9):1398–1417. doi:10.1016/j.tws.
2005.04.003.
10. EI Damatty AA, Sweedan AMI. Equivalent mechanical analog for dynamic analysis of pure conical
tanks. J Thin-Walled Struct. 2006;44(4):429–440. doi:10.1016/j.tws.2006.03.016.
11. Sweedan AMI, EI Damatty AA. Simplified procedure for design of liquid-storage combined conical
tanks. J Thin-Walled Struct. 2009;47(6–7):750–759. doi:10.1016/j.tws.2008.12.005.
12. Hafeez G, EI Ansary AM, EI Damatty AA. Stability of combined imperfect conical tanks under
hydrostatic loading. J Constr Steel Res. 2010;66(11):1387–1397. doi:10.1016/j.jcsr.2010.05.007.
13. Hafeez G, EI Ansary AM, EI Damatty AA. Effect of wind loads on the stability of conical tanks.
Canadian J Civil Eng. 2011;38(4):444–454. doi:10.1139/l11-017.
14. EI Ansary AA, EI Damatty AA. Behavior of elevated liquid-filled concrete conical tanks. General
Conference at CSCE. Montréal, Québec. 2013, May 29 to June 1. CSCE. 1–10.
15. Jolie M, Hassan MM, EI Damatty AA. Assessment of current design procedures for conical tanks
under seismic loading. J Civil Eng. 2013;40(12):1151–1163. doi:10.1139/cjce-2012-0318.
16. Jolie M, EI Ansary AM, EI Damatty AA. Seismic analysis of elevated pure conical tanks under
vertical excitation. J Civil Eng. 2014;41(10):909–917. doi:10.1139/cjce-2014-0104.
17. Azabi TM, EI Damatty AA. Behaviour of reinforced concrete conical tanks under hydrostatic
loading [Master’s thesis]. London, (Canada): The University of Western Ontario, Civil and
Environmental Engineering; 2014.
18. EIansary AA, EI Damatty AA, EI Ansary AM. Nonlinear behaviour of reinforced concrete conical
tanks under hydrostatic pressure. J Civil Eng. 2016;43(2):85–98. doi:10.1139/cjce-2015-0198.
19. EI Ansary AA, EI Damatty AA, EI Ansary AM. Assessment of equivalent cylinder method and
development of charts for analysis of concrete conical tanks. Eng Struct. 2016;126:27–39.
doi:10.1016/j.engstruct.2016.06.053.
20. Musa A, EI Damatty AA. Capacity of liquid-filled steel conical tanks under vertical excitation. J
Thin-Walled Struct. 2016;103:199–210. doi:10.1016/j.tws.2016.02.012.
21. EI Ansary AA, EI Damatty AA. Behaviour of composite conical tanks under hydrostatic pressure.
Eng Struct. 2017;134:172–189. doi:10.1016/j.engstruct.2016.12.041.
22. Criteria for earthquake resistant design of structures (Part-II, liquid retaining tanks) (IS: 1893-
2002). New Delhi: Bureau of Indian Standards.