Experimental Based Analysis of Minor BioactiveCompound Composition of Avocado, Mango and NativePear Seed oil for Pharmaceutical Utilization

Volume: 10 | Issue: 01 | Year 2024 | Subscription
International Journal of Chemical Separation Technology
Received Date: 06/14/2024
Acceptance Date: 07/05/2024
Published On: 2024-08-01
First Page: 15
Last Page: 26

Journal Menu

By: C. P. Ukpaka, Umah Kingdom Matthew, and Joy Chukwuemeka Peter Ukpaka

1Research Student: Department of Chemical/Petrochemical Engineering, Rivers State University, Port Harcourt, Rivers State, Nigeria.
2Professor: Department of Chemical/Petrochemical Engineering, Rivers State University Port Harcourt, Rivers State, Nigeria.
3Research Student: College of Allied Medical Sciences, Department of Pharmacy, Lyceum of the Philippines University Cavite, Philippines.

Abstract

Oil was extracted from avocado, mango and native pear seed through the mechanism of mechano
thermal techniques. In this process no solvent was added for the purpose of the oil recovered rather the
mechanism of extraction was mainly mechanical and distillation process. The different oils recovered
from the process were subjected to pharmaceutical analysis to ascertain the properties of some minor
bioactive compounds and their compositions in relation to the three samples of the agro-based seeds
examined. The parameters analgised were total tocopherols, β – tocopherol, α – tocopherol, γ –
tocopherol, total carotenoids, β – cryptoxanthin, β – carotene, total phenolicsa and total flavonoidsb.
The results of the oil recovered from the agro-based seeds illustrates the following characteristic of
biological properties in terms of the bioactive compound value of total tocopherol value pof 51.27,
67,28 and 70.20 for mango, avocado and native pear seeds and for α – tocopherol value of 42.32, 54.30,
and 60.14, β – tocopherol value of 1.89, 2.24 and 2.79, γ – tocopherol value of 2.06, 2.92, and 2.86,
total carotenoids value of 8.81, 9.70, and 9.95, β – cryptoxanthin value of 8.50, t.61, and 7.96, β –
carotene value of 4.85, 7.18, and 7.94, total phenolicsa value of 610.70, 803.30, and 5053.11, total
flavonoidsb value of 1.55, 1.89, and 2.76 of mango, avocado and native pear seeds respectively. This
research has revealed that the native pear seed is more medicinal for pharmaceutical benefit when used
compared to avocado and mango seed as demonstrated by the properties of the minor bioactive
compound of the 3 varieties of the agro-based materials sampled. The research also, compared the cost
implication of solvent extraction and mechano-thermal approach of oil recovered from these seeds and
conclude that the mechano-thermal techniques is the better than the solvent method.

Loading

Citation:

How to cite this article: C. P. Ukpaka, Umah Kingdom Matthew, and Joy Chukwuemeka Peter Ukpaka, Experimental Based Analysis of Minor BioactiveCompound Composition of Avocado, Mango and NativePear Seed oil for Pharmaceutical Utilization. International Journal of Chemical Separation Technology. 2024; 10(01): 15-26p.

How to cite this URL: C. P. Ukpaka, Umah Kingdom Matthew, and Joy Chukwuemeka Peter Ukpaka, Experimental Based Analysis of Minor BioactiveCompound Composition of Avocado, Mango and NativePear Seed oil for Pharmaceutical Utilization. International Journal of Chemical Separation Technology. 2024; 10(01): 15-26p. Available from:https://journalspub.com/publication/experimental-based-analysis-of-minor-bioactivecompound-composition-of-avocado-mango-and-nativepear-seed-oil-for-pharmaceutical-utilization/

Refrences:

1. Laws, F. (2023). “Can cottonseed join biodiesel race?’ Southeast Farm Press. Retrieved 2011
11-19.
2. Lee, S. & Shah, Y.T. (2022). Biofuls and Bioenergy and Technologies. CRC Prses. 41.
3. Lerry, M. (2022). “Kenef seed oil”. Journal of the American Oil Chemists’ Society. 24(1): 3-5.
4. Lewkowitsch, J. (2022). George H. Warburton (ed). Chemical technology and analysis of oils,
fats and waxes. 2(5 ad). 119.
5. Lou, G., Van, H. & Xie, U. (2022). “Brucea javanica Oil induces Apoptosis in T24 Bladder
Cancer Cells via Upregulation of Caspase-3, Caspase-9, and inhibition of NF-b and COX-2
Expressions” The American Journal of Chinese Medicine. 38(3): 613-24.
6. Louli, V., Folas, G., Voutsas, E. & Magoulas, K. (2023). Extraction of parsley seed oil by
supercritical CO2. J. Supercritcal Fluids, 30, 163-174.
7. Louppe, D., Oteng-Amoako, A.A. & Brink, M. (2022). Plant resources of tropical Africa. 7.
PROTA. 110.
8. Louppe, D., Oteng-Amoeko, A.A. & Bnnk, M. (2022). Plant resources of tropical Africa. 7.
PROTA. ISBN 978-90-5782-209-4.
9. Lu, Q.Y., Arteaga, J.R, Zhang, Q., Huerta, S., Go, V.L.W. & Heber, D. (2023). Inhibition of
prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances.
The Journal of Nutritional Biochemistry, 16(1): 23-30.
10. Luque, M.D. & de Castro, F. P. (2022). “Soxhiet extraction: Past and present panacea”, Journal
of Chromatography; 1217, 2383-2389.
11. Luque, M.D. de Castro, L.E.G. (2022). “Soxhiet extraction of solid materials: an outdated
technique with a promising innovative future Original”, Analytica Chimica Acta; 369, 1-10.
12. Luque, M.D., de Castro, L.E. & Garcia, A. (2022). “Environmental Applications — Soxhlet
Extraction”, Encyclopedia of Separation Science; 2701-2709.
13. Macmillan, H.F. (2021). Oils and Vegetable Fats. Handbook of Tropical Plants. Herbdata New
Zealand. ISBN 978-81-7041-177-2.
14. Madhaven, N. (2022). “Final Report on the Safety Assessment of Corylus Avellana (Hazel)
Seed Oil, Co,ylys Americana (Hazel) Seed Oil. Coryius Avellana (Hazel) Seed Extract, Con,dus
Americana (Hazel) Seed Extract, Corylus Rostrata (Hazel) Seed Extract, Corylus Avellana L
Hazel) Leaf Extract, Corylus Americana (Hazel) Leaf Extract, and Corylus Rotrata (Hazel) Leaf
Extract” International Journal of Toxicology. 20(1 Suppl): 15-20.
15. Magness, J.R., Markie, G.M. & Compton, C.C. (2022). Food and feed crops of the United
States. Interregional Research Project IR-4, IR BUL 1 (Bul. 828 New Jersey Apr. Expt. Sta.).
Retrieved 2014-10-05., quoted in “Purdue New Crops: Avocado oil’.
16. Martin, F.W. (2021). “Okra, Potential Multi-Pwpose Crop for the Temperate Zones and
Tropics”. Economic Botany. (3): 340-345.
17. Martin, F.W., Campbell, C.W. & Ruberte, R.M. (2021). Perennial Edible Fruits of the Tropics:
An Inventory. Agriculture Handbook No. 642, United States Department of Agriculture.
Washington DC, USA, 252-255.
18. Martin, R. J., Porter, N. G. & Deo, B. (2022). “Initial studies on seed oil composition of
Calendula and Lunaria” (PDF). Agronomy N.Z 35. Archived from the pricing.
19. Mascia, P.N. (2021). Plant Biotechnology Sustainable Production of Energy and Co-Products.
Springer. 231.
20. Maxlmov, N. (2021). Physico-Chemical lnvestioatipn of Cocklebur Oil’. Comptes Rendus:
381ff.
21. McHargue, J.S. (2021). “Some Points of Interest Concerning the Cocklebur and Its Seeds’
Ecology. 2(2): 110-119.
22. McLendon, C. (2021). “Affalea cohune “. Florideta. Retrieved 2011-10-21.
23. Meitiner, L.S. & Price, M.L. (2022). “Oil Crops”. Amaranth to Zai Holes. ECHO. Retrieved
2014-10.06.
24. Miceli, A. & De Leo, P. (2022). “Extraction, characterisation and utilization of artichoke
seeds”. Bio-resource Technology. 57(3): 301-302.
25. Modem Technology of Oils, Fats & Its Derivatives. (2022). National Institute of Industrial
Research. 105.
26. Montemor, M.F. (2022). Functional and smart coatings for corrosion protection: a review of
recent advances. Surface and Coatings Technology, 258: 17-37.
27. Moranz, S. & Masters, E. (2022). “What in your chocolate?”. In R. Selvarajah-Jeffery; B.
Wagner E. Sulzbeger (ads.). World Agroforestry Centre annual report 2005: Agroforestry
science to support the millennium development goals. World Agroforestry Cantre. 19.
28. Morgan, B. (2021). ‘Economic Analysis and Feasibility of Coffonseed Oil as a Biodiesel
Feedstock” (POP). Texas Tech. University, Industrial Engineering Department Archived horn
the original (POP) on 2011-11- 22. Retrieved 2011-11-19.
29. Morton, J.F. (2022). Mango’ Fruits of Wan-n Climates. ISBN 978-0-9610184-1-2. Retrieved
2014-10-05.
30. Mrak, E.E.M., Chichester, C.O., Stewart, G.F. (2022). Advances in Food Research. 23.
Academic Press. ISBN978-0080567686. Retrieved 2014-10-05.
31. Muibat O.B., Temitope L.A., Deborah O.A. & Abdulkabir O.O. (2021). Physicochemical
Properties and Fatty Acids Profile of Seed Oil of Telfairia occidentalis Hook, F. International
Journal of Basic and Applied Sciences; 11 (6), 10-13.
32. Nalk, S. N., Lentz, H. & Maheshwari, R. C. (2022). Extraction of perfumes and flavours from
plant materials with liquid carbon dioxide under liquid-vapor equilibrium conditions. Fluid
Phase Equilibria, 49, 115-124.
33. NCBI. (2022). Persea 24odelling. Retrieved from National Center for Biotechnology
Information: www.ncbi.nlm.nili. Gov/pmc/articles/mc3249906
34. Nguyen, K., Barton, P. & Spencer, J. S. (2021). Supereritical carbon dioxide extraction of
vanilla. J. Supercritical. Fluids, 4, 40-46.
35. Nwabanne, J.T. (2022). Kinetics and Thermodynamics Study of Oil Extraction from Fluted
Pumpkin Seed. International Journal of Multidisciplinary Sciences and Engineering, 3(6), 11
15.
36. Nwaogu, L. A., Alisi, C.S. & Ojiako, O.A. (2022). Studies on the nutritional and phytochemical
properties of Persea 24odelling seed. Bio-research, 6(1): 320-322.
37. Ogmdnick, J. (2022). Butternut Squash Seed Oil Goes to Market’ CALS News. Retrieved 2011
01-14.
38. Ojon.com Web site. Ojon.com. Archived from the original on 2011-02-26. Retrieved 2011-11
1 9.
39. Oomah, B. David & Mazza, G. (2021). “Bioactive Components of Flaxseed: Occurrence and
Health Bane fits” In Fereidoon Shahidi: Chi-Tang Ho (eds.). Phytochemical and
Phytopharmaceuticals. The American Oil Chemists Society. Pp. 106-116.
40. Oplinger, E.S. (2021). “Crambe”. Alternative Field Crops Manual. Retrieved 2011-10-24. 03.
Retrieved 2013-10-25. Office of University Research and Education
41. Orhan, I. & Sener, B. (2022). ‘Fatty acid content of selected seed oils” . J Herb Phannacother.
2(3): 2933
42. Orhevba, B.A. & Jinadu, A.O. (2021). Determination of 24odell-chemical properties and
nutritional contents of avocado pear (Persea Americana M.). Academic Research International,
1(3): 372-380.
43. Orzolek M.D., Elkener, T.E, Lamont, WJ. Jnr., Kime, L.F. & Haper, J.K. (2022). Agricultural
Alternatives: Pumpkin Production.. Penn States College of Agricultural Sciences, USA.
44. Otaigbe, J., Oriji, O. & Ekerenam, G. (2022). Studies on the Paint Forming Properties of
Avocado (Persea 24odelling) and African Pear (Dacrodes edulis) Seed Oils. International
Journal of Engineering Research and Application, 6(4): 08-15.
45. Pacheco-Pelencia, L.A., Mestens-Talcott S. & Talcott, S.T. (2022). ‘Chemical composition,
antioxidant p,certies, and thermal of a phytochemical enriched oil horn Acai (Euterpe oleracea
Mert.)”. J Agrics Food Chem. 56(12): 4631-6.
46. Panda, H. (2022). “Tall Oil and its Derivative.” The Complete Technology Book On Natural
products (Forest Beeed). Asia Pacific Business Press. 361—376.
47. Papiamichail, V., Louli, K. & Magoulas, K. (2022). Supercritical fluid extraction of celery seed
oil. J. Supercritcal Fluids, 18, 213-226.
48. Parry, J. & John, W. (2022). Value-adding factors in cold- pressed edible seed oils and flours.
22
49. Parwez. S. (2022). The Pearson Guide to Ns B. Sc. (Nursing) Entrance Examination. Pearson
Education India. 109.
50. Pearson, D. (2021). “Fats and Oils” Composition and Analysis of Food. Øedition. Church Hill
living Stone London, 480-497.
51. Peker, H.., Srmnivasan, M. P., Smith, J. M. & McCoy, B. J., (2021). Caffeine extraction rates
from coffee beans with supercntical carbon dioxide. AIChE J., 38, (5), 761-770.
52. Penedo, P. L., Cociho, O. L .V. & Mendes, M. F. (2021). Phase equilibria of oleic, palmitic,
stearic, linoleic and linolenic acids in supercritical CO2. Braz J. Chem. Eng., 26, (1), 137-142.
53. Perrut, M., Clavier, J.Y., Poletto, M. & Reverchon, E. (2022). Mathematical 24odelling of
sunflower seed extraction by supercritical CO2. Ind. Eng. Chem. Res., 36, 430- 437.
54. Peterson, C.L., Thompson, J., Jones, S. & Hollanback, D. (2022). “Biocliesel from Yellow
Mustard Oil”. U.S. Department of Transportation. Archived from the original on 2012-04-113
55. Pina-Rodrkiusz, A.M. & Akoh, C.C. (2022). ‘Enrichment of amaranth oil with ethyl pelmtitate
at the sn-2 position by chemical and enzymatic synthesis’. J Agric Food Chem. 67(11): 4657
62.
56. Plantas Da Amazonia Para Producao Cosmetica (2023). Uma abordagem qulmica -60 espécies
do extrahvsmo flometal n8o madeireiro da AmazOnia / Floriano Pastore Jr. (coord.); Vanesa
Femandes do Araujo let. Al.];- BrasilIa, 244.
57. Poling, B. E., Prausnitz, J. M. & O’Connell, J. P. (2022). The Properties of Gases and Liquids.
Fifth Ed., McGraw-Hill Co. Inc., New York.
58. Postell, J. & Gesimondo, N. (2023). Materiality and Interior Construction. John Wiley and
Sons. 137.
59. Premanik, K. (2023). “Properties and use of jetropha carcass oil and diesel fuel blends in
compression igeltion engine” Renewable Energy. 28(2): 239-248.
60. Puri, H.S. (2022). Neem: the divine tree: Azadirachta indica. CRC Press. 74
61. Pushkar, S.B., Narendra, N., Rosalvnd. V.M. & Marçal, Q.P. (2022). Characterization of the
oils from the pulp and seeds of avocado (cultivar: Fuerte) fruits. Grasasy Aceites, 52(3-4): 171
1 74.
62. Puthi, J. (2022). Physiology, Chemistry and Technology of Passion Fruit. Advances in Food
Research. 12. 268.
63. Quinn, J. & Myers, R.L (2022). “Trends in new crops and new uses”. Nigerseed: Specialty grain
opportunity for Midwestern US. ASHS Press. 174-82.
64. Rachmaniah, O., Ju Yi-Hsu, V., Shalk R., Tjondronegoro, I. & Musfil, A.S. (2023). A study on
AciCatalyzed Transesterification of Crude Rice Bran Oil for Biodiesel Production. World
Energy Congress (19). Archived from original (PDF) on 2014-10-10. Rstneved2oll-11-19.
65. Raina, N. (2023). Crop Management and Postharvest Handing of Horticultural Products: Crop
Fertilization Nutrition and Growth. 3. Science Publishers. 178.
66. Ramadha, A.S., Jayamj, S. & Muraleedharan, C. (2023). “Characterization and effect of using
rubber seed c as fuel hi the compression ignition engines” Renewable Energy. 20(5): 76-803
67. Reverchon, E. & Marrone, C. (2023). Modeling and simulation of the supercritical CO2
extraction of vegetable oils. J. Supercrit. Fluids, 19, 161-175.
68. Reverchon. E., Donsi, G. & Osseo, L. S., (2022). Modeling of supercritical fluid extraction
from herbaceous matrices. Ind. Eng. Chem. Rex, 32, 2721- 2726.
69. Rincon, J,, Martinez, F., Rodriguez, L. & Ancillo, V. (2023). Recovery of triglycerides from
used flying oil by extraction with liquid and supercritical ethane. J. Supercritical Fluids, 56,
72-79.
70. Robbins, R.J. (2022). 7he Citrus Oils: An Introductory Review’ Selected markets for the
essential oils of lime, lemon and orange. 17.
71. Roberts T (2023). Food and Fitness: many uses of pumpkin. Available on:
missourifamilies.orglfeatures/nutritionarticle s/nut199.htm Accessed on 13th August, 2015.
72. Rostegno, M.A. & Prado, J.M. (2023). Natural Product Extraction: Principles and Applications.
Royal Society of Chemistry. 35.
73. Roy, C., Onto, M. & Hirose, T. (2022). Extraction of ginger oil with supercritical carbon
dioxide: Experiments and 25odelling. Industrial & Engineering Chemistry Research, 35, 607
612.
74. Rubber Seed Oil (2022). Finding Uses for a Waste Product (Nigeria)”. International
Development Research Centre. AICM Wed from original on April 2, 2012. Retrieved 2011-10
24.
75. Ruter, J.M. (2022). “Nursery Production of Tee Oil Camellia under different Light Levels”.
Trends in new crops and new uses. Retrieved 2014-10-05.
76. Ryan, E., Galvin, K., O’Connor, T.P., Maguire, A.R. & Orlen N.M. (2023). “Fatty acid profile,
tocopherol, squelene and phytoeterol content of brazil, pecan, pine, pistachio and cashew nuts”.
Int. J Food Sd Nutr. 57(3—4): 219-28.
77. Sacha I. (2023). Oil from the Amazon Takes Gold in Paris ‘. Pew Food. September22, 2006.
Retrieved 2011-10-24.
78. Sadiq, A. (2023). Assessment of Nigeria Sweet Orange Seed Oil for Biodiesel Production.
Nigerian Journal of Tropical Engineering, 9(1 & 2): 1-9.
79. Salami, A., Fatemi, S.H., Zakizadeh N.N, H. & Safaralie, A. (2023). Mathematical 26odelling
of super- critical of valerenic acid from Valeriana officinails L. Chem. Eng. Technol., 31, 10,
1470-1480.
80. Salunkhe, D. K (2022). World oilseeds: Chemistry. Technology and utilization. Springer. 460.
81. Schauss, A.G.; Jensen, G.S. & Wu, X. (2023). ‘Açai (Euterpe oleracea)” Flavor and Health
Benefits of Small Fruits. ACS Symposium Series. 1035, 213-223.