[1] Arbi, M., Souiai, O., Rego, N., Larbi, I., Naya, H., Ghram, A., & Houimel, M. (2020, April 25). Historical origins and zoonotic potential of avian influenza virus H9N2 in Tunisia revealed by Bayesian analysis and molecular characterization. Archives of Virology, 165(7), 1527–1540. https://doi.org/10.1007/s00705 020-04624-4
[2] Furlong, & Holland. (n.d.). https://bioone.org/jBayesian-Phylogenetic-Analysis-Supports- Monophyly-of-Ambulacraria-and-of-Cyclostomes. BioOne Digital Library, 19(5).
[3] Fabreti, L. G., & Höhna, S. (2021, October 15). Convergence assessment for Bayesian phylogenetic analysis using MCMC simulation. Methods in Ecology and Evolution, 13(1), 77–90. https://doi.org/10.1111/2041-210x.13727
[4] Xie, Q., Bu, W., & Zheng, L. (2005, February). The Bayesian phylogenetic analysis of the 18S rRNA sequences from the main lineages of Trichophora (Insecta: Heteroptera: Pentatomomorpha). Molecular Phylogenetics and Evolution, 34(2), 448–451. https://doi.org/10.1016/j.ympev.2004.10.015
[5] Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. https://doi.org/10.1186/1471-2148-7-214
[6] Winiarska-Mieczan A, KwiecieÅ„ M. Charakterystyka owomukoidu–jednego z wazniejszych alergenów pokarmowych [Avian egg’s white ovomucoid as food-allergen for human]. Postepy Biochem. 2007;53(3):212-7. Polish. PMID: 18399349.
[7] De Bruyn, A., Martin, D. P., & Lefeuvre, P. (2013, December 19). Phylogenetic Reconstruction Methods: An Overview. Methods in Molecular Biology, 257–277. https://doi.org/10.1007/978-1- 62703-767-9_13
[8] Drummond, Ho, Rawlence, & Rambaut. (2007, May 17). A Rough Guide to BEAST 1.4. Retrieved August 25, 2023, from https://www.researchgate.net/profile/Nicolas Rawlence/publication/228988177_A_Rough_Guide_to_beast_14/links/0a85e532a8d141a0e2000000/A-Rough-Guide-to-beast-14.pdf.
[9] Bouckaert, Remco, et al. “Estimating Species Trees from Multilocus Data.” (2012, Oct 12).Estimating Species Trees from Multilocus Data.
[10] Stein, J., Catterall, J. F., Kristo, P., Means, A. R., & O’Malley, B. W. (1980, October 1). Ovomucoid intervening sequences specify functional domains and generate protein polymorphism. Cell; Cell Press. https://doi.org/10.1016/0092-8674(80)90431-6
[11] Wei, X., Chen, M., & Cui, J. (2017, December 1). Bayesian evolutionary analysis for emerging infectious disease: an exemplified application for H7N9 avian influenza viruses. Science China-life Sciences; Springer Science+Business Media. https://doi.org/10.1007/s11427-017- 9227-6
[12] Baele, G., Lemey, P., Rambaut, A., & Suchard, M. A. (2017). Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST. Bioinformatics, 33(12), 1798–1805. https://doi.org/10.1093/bioinformatics/btx088
[13] Osozawa, S., & Wakabayashi, J. (Year). Cicada timetree by BEAST v1.X verified the recently
and exponentially increasing base substitution rates. Title of the Journal or Preprint Server, Version number. https://doi.org/10.1101/2020.12.03.409599
[14] Jose-Abrego, A., Roman, S., Laguna-Meraz, S., Rebello-Pinho, J. R., Arevalo, S. J., & Panduro, A. (2023, May 24). Tracing the evolutionary history of hepatitis B virus genotype H endemic to Mexico. Frontiers in Microbiology; Frontiers Media. https://doi.org/10.3389/fmicb.2023.1180931
[15] Hill, V., & Baele, G. (2019, July 31). Bayesian Estimation of Past Population Dynamics in
BEAST 1.10 Using the Skygrid Coalescent Model. Molecular Biology and Evolution; Oxford
University Press. https://doi.org/10.1093/molbev/msz172
[16] Baele, G., Ayres, D. L., Rambaut, A., Suchard, M. A., & Lemey, P. (2019, January 1). High-
Performance Computing in Bayesian Phylogenetics and Phylodynamics Using BEAGLE. Springer
 eBooks. https://doi.org/10.1007/978-1-4939-9074-0_23
[17] Dellicour, S., Gill, M. S., Faria, N. R., Rambaut, A., Pybus, O. G., Suchard, M. A., & Lemey, P. (2021, February 2). Relax, Keep Walking — A Practical Guide to Continuous Phylogeographic Inference with BEAST. Molecular Biology and Evolution; Oxford University Press. https://doi.org/10.1093/molbev/msab031
[18] Springer, M. S., Murphy, W. J., & Roca, A. L. (2018, April 1). Appropriate fossil calibrations and tree constraints uphold the Mesozoic divergence of solenodons from other extant mammals.
 Molecular Phylogenetics and Evolution; Elsevier BV. https://doi.org/10.1016/j.ympev.2018.01.007
[19] Kumar, S., Nei, M., Dudley, J. T., & Tamura, K. (2008, March 27). MEGA: A biologist- centric software for evolutionary analysis of DNA and protein sequences. Briefings in
Bioinformatics; Oxford University Press. https://doi.org/10.1093/bib/bbn017
[20] Lee, J., Cho, H. Y., Lee, J. H., Ahn, D. U., Kim, K. T., & Paik, H. D. (2023, August 9). The inhibitory effect of ovomucoid from egg white on the biofilm formation by Streptococcus mutans. Journal of the Science of Food and Agriculture; Wiley. https://doi.org/10.1002/jsfa.12915
[21] Abeyrathne, E., Lee, H. Y., Jo, C., Suh, J. W., & Ahn, D. U. (2015, September 1). Enzymatic hydrolysis of ovomucoid and the functional properties of its hydrolysates. Poultry Science; Oxford
University Press. https://doi.org/10.3382/ps/pev196
[22] Building phylogenetic trees from molecular data with MEGA – PubMed. (2013, May 1). PubMed. https://doi.org/10.1093/molbev/mst012
[23] OVOMUCOID | Bioseutica®. (n.d.). OVOMUCOID | Bioseutica®.
https://www.bioseutica.com/products/ovomucoid#:~:text=Comprising%2011%25%20of%20the
%20egg,in%20a%201%3A1%20ratio.
[24] Portugal, J. S., Allerdice, M. E. J., Moraru, G. M., King, J. W. B., Paddock, C. D., Becker, T., Smith, T. C., & Goddard, J. (2019, April 5). Molecular Phylogeny of Dermacentor
parumapertus (Acari: Ixodidae) from Two Locations Within Its Geographical Range. Journal of Medical Entomology; Oxford University Press. https://doi.org/10.1093/jme/tjz042
[25] Suchard, Lemey, Baele, Ayres, Drummond, & Rambaut. (n.d.). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1).
[26] Suchard, M. A., Christina M. R. Kitchen, Sinsheimer, J. S., & Weiss, R. E. (2003). Hierarchical Phylogenetic Models for Analyzing Multipartite Sequence Data. Systematic Biology, 52(5), 649–664. http://www.jstor.org/stable/3651067