Physics, Novel Concepts and Technical Analysis of GaMnAs Digital Alloys

Volume: 10 | Issue: 2 | Year 2024 | Subscription
International Journal of Metallurgy and Alloys
Received Date: 09/03/2024
Acceptance Date: 10/01/2024
Published On: 2024-10-21
First Page:
Last Page:

Journal Menu

https://doi.org/10.37628/ijma.v10i2.11521

By: Kamal Nain Chopra and Ritu Walia

1Former Professor, Applied Sciences Department, Maharaja Agrasen Institute of Technology, Rohini, GGSIP University, New Delhi, India.
1Former Research Scientist, Optical Materials Group, Department of Physics, Hauz Khas, 110016, New Delhi, India; and Former Scientist G, Laser Science and Technology Centre, Metcalfe House, Delhi, India.
2Associate Professor, Applied Sciences Department, Maharaja Agrasen Institute of Technology, Rohini, GGSIP University, New Delhi, India.

Abstract

GaMnAs Digital Alloys have recently drawn the attention of various workers, due to their very special properties from the point of view of applications in spintronics. Physics and Novel Concepts of GaMnAs Digital Alloys have been presented in this paper. The various technical aspects of digital alloys like III1-xMnxV Random Alloys (InMnAs and GaMnAs), MBE grown GaMnAs Random Alloys, Photo-induced Ferromagnetism, Magnetization Measurements, MagnetoTransport Measurements, and Temperature Dependence of Sheet Resistance have been presented. Some of the important related studies have also been reviewed. Some ideas about other useful digital alloys have also been incorporated. It has been highlighted how crucial these materials are for spintronic devices. The material presented in this paper is expected to be of some use to the new researchers entering this field and the designers and technologists engaged in the fabrication of spintronic devices by using GaMnAs digital alloys.

Loading

Citation:

How to cite this article: Kamal Nain Chopra and Ritu Walia, Physics, Novel Concepts and Technical Analysis of GaMnAs Digital Alloys. International Journal of Metallurgy and Alloys. 2024; 10(2): -p.

How to cite this URL: Kamal Nain Chopra and Ritu Walia, Physics, Novel Concepts and Technical Analysis of GaMnAs Digital Alloys. International Journal of Metallurgy and Alloys. 2024; 10(2): -p. Available from:https://journalspub.com/publication/ijma-v10i2-11521/

Refrences:

1. Ohno H. Toward functional spintronics. Science. 2001;291:840.

  1. Oiwa A, Endo A, Katsumoto S, Iye Y, Ohno H, Munekata H. Phys Rev B. 1999;59:5826.
  2. Matsukura F, Abe E, Ohno H. J Appl Lett. 2000;87:6442.
  3. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Science. 2000;287:1019.
  4. Ueda K, Tabata H, Kawai T. Appl Phys Lett. 2001;79:988.
  5. Kawakami RK, Johnston-Halperin E, Chen LF, Hanson M, Guebels N, Speck JS, Gossard AC, Awschalom DD. (Ga,Mn)As as a digital ferromagnetic heterostructure. Appl Phys Lett. 2000;77:2379.
  6. Abe E, Matsukura F, Yasuda H, Ohno Y, Ohno H. Physica E. 2000;7:981.
  7. Jungwirth T, Niu Q, MacDonald AH. cond-mat/0110484. 2001.
  8. Liu X, Lim WL, Ge Z, Shen S, Dobrowolska M, Furdyna JK, et al. Strain-engineered ferromagnetic In1-xMnxAs films with in-plane easy axis. Appl Phys Lett. 2005;86:112512.
  9. Yu KM, Walukiewicz W, Wojtowicz T, Lim WL, Liu X, Bindley U, et al. Curie temperature limit in ferromagnetic Ga1–xMnxAs. Phys Rev B. 2003;68:041308(R).
  10. Chen X, Na M, Cheon M, Wang S, Luo H, McCombe BD, et al. Above-room-temperature ferromagnetism in GaSb/Mn digital alloys. Appl Phys Lett. 2002;81:511-513.
  11. Yu KM, Walukiewicz W, Wojtowicz T, Kuryliszyn I, Liu X, Sasaki Y, et al. Effect of the location of Mn sites in ferromagnetic Ga1–xMnxAs on its Curie temperature. Phys Rev B. 2002;65:201303(R).
  12. Ohno H. J Magnetism Magnet Mater. 1999;200:110–129.
  13. Franz J, Peiris FC, Liu X, Bindley U, Furdyna JK. Determination of the dielectric functions of MBE-grown Zn1-xMgxTe II-VI semiconductor alloys. Phys Status Solidi B. 2004;241:507.
  14. Kudelska-Kuryliszyn, Domagala JZ, Wojtowicz T, Liu X, Lusakowska E, Dobrowolski W, et al. The effect of Mn interstitials on the lattice parameter of Ga1-xMnxAs. J Appl Phys. 2004;95:603.

16. Ohno H, Munekata H, Penney T, von Molnár S, Chang LL. Ferromagnetic interactions in doped
semiconductors and their nanostructures (invited). Phys Rev Lett. 1997;78:4617.

  1. Liu X, Lim WL, Dobrowolska M, Furdyna JK, Wojtowicz T. Ferromagnetic resonance study of the free-hole contribution to magnetization and magnetic anisotropy in modulation-doped Ga1-xMnxAs / Ga1-yAlyAs.Phys Rev B. 2005;71:035307.)
  2. Ruzmetov D, Scherschligt J, Baxter DV, Wojtowicz T, Liu X, Sasaki Y, et al. High-temperature Hall effect in Ga1-xMnxAs. Phys Rev B. 2004;69:155207.
  3. Rappoport TG, Redliński P, Liu X, Zaránd G, Furdyna JK, Jankó B. Anomalous behavior of spin-wave resonances in Ga1-xMnxAs thin films. Phys Rev B. 2004;69:125213.
  4. Baxter DV, Ruzmetov D, Scherschligt J, Sasaki Y, Liu X, Furdyna JK, et al. Anisotropic magnetoresistance in Ga1–xMnxAs. Phys Rev B. 2002;65:212407.
  5. Welp U, Vlasko-Vlasov VK, Liu X, Furdyna JK, Wojtowicz T. Magnetic domain structure and magnetic anisotropy in Ga1-xMnxAs. Phys Rev Lett. 2003;90:167206.
  6. Yuldashev SU, Im H, Yalishev VS, Park CS, Kang TW, Lee S, et al. Magnetoresistance of Ga1-xMnxAs epitaxial layers doped by Be. Jpn J Appl Phys. 2003;42:6256.
  7. Rüester C, Borzenko T, Gould C, Schmidt G, Molenkamp LW, Liu X, et al. Very large magnetoresistance in lateral ferromagnetic (Ga,Mn)As wires with nanoconstrictions. Phys Rev Lett. 2003;91:216602.
  8. Liu X, Bindley U, Sasaki Y, Furdyna JK. Optical properties of epitaxial ZnMnTe and ZnMgTe films for a wide range of alloy compositions. J Appl Phys. 2002;91:2859.

25. Hong J, Wang DS, Wu RQ. Carrier-induced magnetic ordering control in a digital (Ga,Mn)As structure.
Phys Rev Lett. 2005;94:137206.

  1. Gleason JN, Hjelmstad ME, Dasika VD, Goldman RS, Fathpour S, Charkrabarti S, et al. Applied Phys Lett. 2005;86:011911.

27.  Vurgaftman I, Meyer JR. Curie-temperature enhancement in ferromagnetic semiconductor
superlattices. Phys Rev B. 2001;64:245207.

  1. Lee KJ, Lee SY, Bae SK, Choi SH, Lee HJ, Chang J, et al. Magnetization reversal in trilayer structures consisting of GaMnAs layers with opposite signs of anisotropic magnetoresistance. Sci Rep. 2018;8:2288.

29.  Azzouz L, Halit M, Charifi Z, Baaziz H, Denawi MR, Rérat H, et al. Magnetic semiconductor properties
of RbLnSe2 (Ln = Ce, Pr, Nd, Gd): A density functional study. J Magnetism Magnet Mater.
2020;501:166448.

30. Bandyopadhyay A, Traxel DK, Kelle L, Lang M, Juhasz M, EliaZ N, et al. Alloy design via additive
manufacturing: Advantages, challenges, applications, and perspectives. Mater Today. 2022;52:207-
224.

31. Zainelabdeen IH, Ismail L, Omer FM, Khan KA, Schiffer A. Recent advancements in hybrid additive
manufacturing of similar and dissimilar metals via laser powder bed fusion. Mater Sci Eng A.
2024;909:146833.

  1. Kerimova S, Donmez O, Gunes M, Kuruoglu F, Aydin M, Gumus C, et al. Analysis of mixed optical transitions in dilute magnetic AlAs/GaAs/GaMnAs quantum wells grown on high substrate index by molecular beam epitaxy. Mater Sci Eng B. 2023;290:116349.
  2. Piskorska-Homml E, Gas K. (Ga,Mn)N—Epitaxial growth, structural, and magnetic characterization—Tutorial. J Appl Phys. 2024;135:071101. doi:10.1063/5.0189159.
  3. Lahcene Azzouz,MohamedHalit, ZoulikhaCharifi, HakimBaaziz, MichelRératHassanDenawi, Chérif F. Matta, Magnetic semiconductor properties of RbLnSe2 (Ln = Ce, Pr, Nd, Gd): A density functional study, Journal of Magnetism and Magnetic Materials,Volume 501, 1 May 2020, 166448.
  4. Traxel, MelanieLang, MichaelJuhasz, NoamEliaz, SusmitaBose, Alloy design via additive manufacturing: Advantages, challenges, applications and perspectives, Materials Today, Research: Review. 2022 January–February;52:207–224.
  5. Ibrahim H. Zainelabdeen, Linda Ismail, Omer F. Mohamed, Kamran A. Khan, Andreas Schiffer. Recent advancements in hybrid additive manufacturing of similar and dissimilar metals via laser powder bed fusion, Mater Sci Eng: A. 2024 September;909:146833.
  6. Edyta Piskorska-Hommel and Katarzyna Gas, (Ga,Mn)N—Epitaxial growth, structural, and magnetic characterization—Tutorial. J Appl Phys. 2024;135:071101, https://doi.org/10.1063/5.0189159.

https://doi.org/10.37628/ijma.v10i2.11521