Microneedle platform: An innovative way for transdermal drug delivery system.

Volume: 10 | Issue: 01 | Year 2024 | Subscription
International journal of Nanobiotechnology
Received Date: 05/10/2024
Acceptance Date: 06/28/2024
Published On: 2024-06-29
First Page:
Last Page:

Journal Menu

By: Swapnil k. Patil, Sameer R. Shaikh, Azam Z. Shaikh, Akash S. Jain, and Divakar R. Patil

Abstract

The transdermal route is employed as an alternate method in many therapeutic applications to get over the important drawbacks of oral medication delivery. Transdermal microneedle arrays have been used for drug administration via the skin for a very long time. Microneedles are devices with a reputation for being highly efficacious and flexible. Microneedles are devices with a reputation for being highly effective and flexible. Intellectual and industrial groups are interested in this technology because of its remarkable properties, which include painless penetration, low cost, excellent medicinal productivity, and relative protection. Microneedles exhibit remarkable properties for a range of biological applications, including the transport of extremely large molecules exhibiting ionic and polar physical-chemical characteristics. In several biological fields, such as immunization delivery, diagnosis, and therapy, microneedles are helpful A new class of instruments with great promise for the biomedical industry is microneedles. In the years to come, transdermal microneedle innovations are expected to become a preferred method of administering medication as they are affordable, painless, and effective.  We describe current breakthroughs in microneedles for therapeutic uses in this study. We investigate the constituent materials and manufacturing technologies that improve the administration of important medicinal compounds through the skin. We also examine the utility of improved microneedles as medication delivery techniques.

Keywords:-Microneedle devices; transdermal penetration; drug delivery,stratum corneum, Painless administrati

Loading

Citation:

How to cite this article: Swapnil k. Patil, Sameer R. Shaikh, Azam Z. Shaikh, Akash S. Jain, and Divakar R. Patil, Microneedle platform: An innovative way for transdermal drug delivery system.. International journal of Nanobiotechnology. 2024; 10(01): -p.

How to cite this URL: Swapnil k. Patil, Sameer R. Shaikh, Azam Z. Shaikh, Akash S. Jain, and Divakar R. Patil, Microneedle platform: An innovative way for transdermal drug delivery system.. International journal of Nanobiotechnology. 2024; 10(01): -p. Available from:https://journalspub.com/publication/microneedle-platform-an-innovative-way-for-transdermal-drug-delivery-system/

Refrences:

1.Lhernould M.S. Optimizing hollow microneedles arrays aimed at transdermal drug delivery. Microsyst. Technol. 2013, 19, 1–8. [CrossRef]
2.Li, Y.; Zhang, H.; Yang, R.; Laffitte, Y.; Schmill, U.; Hu, W.; Kaddoura, M.; Blondeel, E.J.M.; Cui, B. Fabrication of sharp siliconhollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst. Nanoeng. 2019, 5, 41.[CrossRef]
3.T1.Lhernould M.S. Optimizing hollow microneedles arrays aimed at transdermal drug delivery. Microsyst. Technol. 2013, 19, 1–8. [CrossRef]
2.Li, Y.; Zhang, H.; Yang, R.; Laffitte, Y.; Schmill, U.; Hu, W.; Kaddoura, M.; Blondeel, E.J.M.; Cui, B. Fabrication of sharp siliconhollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst. Nanoeng. 2019, 5, 41.[CrossRef]
3.Tuan-Mahmood, T.-M.; McCrudden, M.T.C.; Torrisi, B.M.; McAlister, E.; Garland, M.J.; Singh, T.R.R.; Donnelly, R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013, 50, 623–637. [CrossRef] [PubMed]
4.Singh, T.; McMillan, H.; Mooney, K.; Alkilani, A.; Donnelly, R. Microneedles for drug delivery and monitoring. In Microfluidic Devices for Biomedical Applications; Elsevier: Amsterdam, The NethQerlands, 2013; pp. 185–230.
5.Homayun, B.; Lin, X.; Choi, H.-J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019, 11, 129. [CrossRef] [PubMed]
6.Stillhart, C.; Vuˇci´cevi´c, K.; Augustijns, P.; Basit, A.W.; Batchelor, H.; Flanagan, T.R.; Gesquiere, I.; Greupink, R.; Keszthelyi, D.;Koskinen, M. Impact of gastrointestinal physiology on drug absorption in special populations–An UNGAP review. Eur. J. Pharm.Sci. 2020, 147, 105280. [CrossRef]
7.Shen, M.-Y.; Liu, T.-I.; Yu, T.-W.; Kv, R.; Chiang, W.-H.; Tsai, Y.-C.; Chen, H.-H.; Lin, S.-C.;Chiu, H.-C. Hierarchically targetablePolysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colonCancer. Biomaterials 2019, 197, 86–100. [CrossRef] 8.Maddison, J.E.; Page, S.W.; Church, D.B. Small Animal Clinical Pharmacology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; Volume 5.
9.Mitchell, J.R.; Whitney, F.W. The effect of injection speed on the perception of intramuscular injection pain: A clinical update.Aaohn J. 2001, 49, 286–292. [CrossRef]
10.Hegde, N.R.; Kaveri, S.V.; Bayry, J. Recent advances in the administration of vaccines for infectious diseases: Microneedles asPainless delivery devices for mass vaccination. Drug Discov. Today 2011, 16, 1061–1068. [CrossRef]
11.Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach andIncreasing potential for transdermal drug delivery system.Biomed. Pharmacother. 2019, 109, 1249–1258. [CrossRef] [PubMed]
12.Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [CrossRef]
13.Ogunjimi, A.T.; Carr, J.; Lawson, C.; Ferguson, N.; Brogden, N.K. Micropore closure time is longer following microneedleApplication to skin of color. Sci. Rep. 2020, 10, 1–14. [CrossRef]
14.Haridass, I.N.; Wei, J.C.; Mohammed, Y.H.; Crichton, M.L.; Anderson, C.D.; Henricson, J.; Sanchez,W.Y.; Meliga, S.C.; Grice, J.E.;Benson, H.A.; et al. Cellular metabolism and pore lifetime of human skin following microprojection array mediation. J. Control.Release 2019, 306, 59–68. [CrossRef] [PubMed]
15.Kalluri, H.; Banga, A.K. Microneedles and transdermal drug delivery. J. Drug Deliv. Sci. Technol. 2009, 19, 303–310. [CrossRef]
16.Bal, S.; Kruithof, A.C.; Liebl, H.; Tomerius, M.; Bouwstra, J.; Lademann, J.; Meinke, M. In vivo visualization of microneedleConduits in human skin using laser scanning microscopy. Laser Phys. Lett. 2010, 7, 242–246. [CrossRef]
17.Gill, H.S.; Prausnitz, M.R. Coated microneedles for transdermal delivery. J. Control. Release 2007, 117, 227–237. [CrossRef][PubMed]
18.Luttge, R. Nano-and Microfabrication for Industrial and Biomedical Applications; WilliamAndrew: Norwich, NY, USA, 2016
19.Xie, Y.; Xu, B.; Gao, Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomed.Nanotechnol. Biol. Med. 2005, 1, 184–190. [CrossRef] [PubMed]
20.Yang, J.; Liu, X.; Fu, Y.; Song, Y. Recent advances of microneedles for biomedical applications: Drug delivery and beyond. ActaPharm. Sin. B 2019, 9, 469–483. [CrossRef] [PubMed]
21.He, X.; Sun, J.; Zhuang, J.; Xu, H.; Liu, Y.; Wu, D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices,Safety, and Prospects. Dose-Response 2019, 17, 1559325819878585. [CrossRef] [PubMed]
22.Prausnitz, M.R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 2004, 56, 581–587. [CrossRef] [PubMed]
23..Pradeep Narayanan, S.; Raghavan, S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol. 2017,93, 407–422. [CrossRef]
24.Pradeep Narayanan, S.; Raghavan, S. Fabrication and characterization of gold-coated solid silicon microneedles with improvedBiocompatibility. Int. J. Adv. Manuf. Technol. 2019, 104, 3327–3333. [CrossRef]
25.Martin, C.J.; Allender, C.J.; Brain, K.R.; Morrissey, A.; Birchall, J.C. Low temperature
fabrication of biodegradable sugar glassMicroneedles for transdermal drug delivery applications.Control. Release 2012, 158, 93–101. [CrossRef] [PubMed]
26.Cha, K.J.; Kim, T.; Park, S.J.; Kim, D.S. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arraysWith adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles. J. Micromech. Microeng. 2014, 24, 115015.[CrossRef]
27.Xie, L.; Zeng, H.; Sun, J.; Qian, W. Engineering microneedles for therapy and diagnosis: A survey. Micromachines 2020, 11, 271.[CrossRef]
28.Tseng, A.A.; Chen, Y.-T.; Chao, C.-L.; Ma, K.-J.; Chen, T. Recent developments on microablation of glass materials using excimerLasers. Opt. Lasers Eng. 2007, 45, 975–992. [CrossRef]
29.Lee, J.W.; Han, M.-R.; Park, J.-H. Polymer microneedles for transdermal drug delivery. J. Drug Target. 2013, 21, 211–223. [CrossRef][PubMed]
30.Wang, P.; Paik, S.; Kim, S.; Allen, M.G. Hypodermic-Needle-Like Hollow Polymer Microneedle Array: Fabrication and Characterization. J. Microelectromec. Syst. 2014, 23, 991– 998. [CrossRef]
31.Ita, K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics 2015, 7, 90–105. [CrossRef]
32.Kochhar, J.S.; Soon, W.J.; Choi, J.; Zou, S.; Kang, L. Effect of microneedle geometry and supporting substrate on microneedle array Penetration into skin. J. Pharm. Sci. 2013, 102, 4100– 4108. [CrossRef]
33.Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Trans.Biomed. Eng. 2005, 52, 909–915. [CrossRef
34..Liu, S.; Jin, M.-N.; Quan, Y.-S.; Kamiyama, F.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Transdermal delivery ofRelatively high molecular weight drugs using novel selfdissolving microneedle arrays fabricated from hyaluronic acid and ttheiCharacteristics and safety after application to the skin. Eur. J. Pharm. Biopharm. 2014, 86, 267–276. [CrossRe
35.Mdanda S, Ubanako P, Kondiah PP, et al (2021) Recent advances in microneedle platforms for Transdermal Drug Delivery Technologies. Polymers 13:2405. Doi: 10.3390/polym13152405
36.Matriano, J.A.; Cormier, M.; Johnson, J.; Young, W.A.; Buttery, M.; Nyam, K.; Daddona, P.E. Macroflux® Microprojection AArraPatch Technology: A New and Efficient Approach for Intracutaneous Immunization. Pharm. Res. 2002, 19, 63–70. [CrossRef
37.Ingrole, R.; Gill, H. Microneedle coating methods: A review with a perspective. J. Pharmacol. Exp. Ther. 2019, jpet.119.258707.[CrossRef] [PubMed]
38.Gill, H.S.; Prausnitz, M.R. Pocketed microneedles for drug delivery to the skin. J. Phys. Chem. Solids 2008, 69, 1537–1541.[CrossRef] [PubMed]
39. Liang, L.; Chen, Y.; Zhang, B.L.; Zhang, X.P.; Liu, J.L.; Shen, C.B.; Cui, Y.; Guo, X.D. Optimization of dip-coating methods for the Fabrication of coated microneedles for drug delivery.J. Drug Deliv. Sci. Technol. 2020, 55, 101464. [CrossRe
40.Uddin, M.J.; Scoutaris, N.; Klepetsanis, P.; Chowdhry, B.; Prausnitz, M.R.; Douroumis, D. Inkjet printing of transdermaMicroneedles for the delivery of anticancer agents. Int. J. Pharm. 2015, 494, 593–602. [CrossRef]
41.Luo, Z.; Sun, W.; Fang, J.; Lee, K.; Li, S.; Gu, Z.; Dokmeci, M.R.; Khademhosseini, A. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Adv. Healthc. Mater. 2019, 8, 1801054. [CrossRef] [PubMed]
42.Dong, L.; Li, Y.; Li, Z.; Xu, N.; Liu, P.; Du, H.; Zhang, Y.; Huang, Y.; Zhu, J.; Ren, G.; et al. Au Nanocage-Strengthened Dissolving Microneedles for Chemo-Photothermal Combined Therapy of Superficial Skin Tumors. ACS Appl. Mater. Interfaces 2018, 10, 9247–9256. [CrossRef
43.Chen, M.-C.; Lin, Z.-W.; Ling, M.-H. Near-Infrared Light-Activatable Microneedle System for Treating Superficial Tumors by Combination of Chemotherapy and Photothermal Therapy. ACS Nano 2016, 10, 93–101. [CrossRef]
44.Martanto, W.; Davis, S.P.; Holiday, N.R.; Wang, J.; Gill, H.S.; Prausnitz, M.R. Transdermal Delivery of Insulin Using MicroneedlesIn Vivo. Pharm. Res. 2004, 21, 947–952. [CrossRef] [PubMed]
45.Ling, M.-H.; Chen, M.-C. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin diabetic rats. Acta Biomater. 2013, 9, 8952–8961. [CrossRef]
46.Liu, S.; Jin, M.-N.; Quan, Y.-S.; Kamiyama, F.; Katsumi, H.; Sakane, T.; Yamamoto,
A. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J. Control. Release 2012, 161, 933– 941. [CrossRef
47.Xu, B.; Jiang, G.; Yu, W.; Liu, D.; Zhang, Y.; Zhou, J.; Sun, S.; Liu, Y. H 2 O 2-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin. J. Mater. Chem. B 2017, 5, 8200–8208.[CrossRef]
48.Chi, J.; Zhang, X.; Chen, C.; Shao, C.; Zhao, Y.; Wang, Y. Antibacterial and angiogenic chitosan microneedle array patch for Promoting wound healing. Bioact. Mater. 2020, 5, 253–259. [CrossRef]
49.Park, S.Y.; Lee, H.U.; Lee, Y.-C.; Kim, G.H.; Park, E.C.; Han, S.H.; Lee, J.G.; Choi, S.; Heo,N.S.; Kim, D.L.; et al. Wound healing Potential of antibacterial microneedles loaded with green tea extracts. Mater. Sci. Eng. C 2014, 42, 757–762. [CrossRef]
50.Gupta, P.; Yadav, K.S. Applications of microneedles in delivering drugs for various ocular diseases. Life Sci. 2019, 237, 116907.[CrossRef] [PubMed]
51.Than, A.; Liu, C.; Chang, H.; Duong, P.K.; Cheung, C.M.G.; Xu, C.; Wang, X.; Chen, P. 2018. Self-implantable double-layered Micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat. Commun. 2018, 9, 1–12. [CrossRef] [PubMed]