Optimization Strategies Towards Enhanced Production of Microbial Surfactants for Diverse Industrial Applications: A Futuristic Approach

Volume: 10 | Issue: 01 | Year 2024 | Subscription
International Journal of Industrial Biotechnology and Biomaterials
Received Date: 03/21/2024
Acceptance Date: 04/11/2024
Published On: 2024-05-22
First Page: 11
Last Page: 22

Journal Menu

By: Tamanna Kaundal, Anjali Sharma, and Navneet Batra

Abstract

Chemical or synthetic surfactants being employed in numerous industries pose significant environmental hazards due to their persistence in the environment and potential toxicity to aquatic life. Biosurfactants are low-molecular-weight surface-active compounds that offer a promising alternative to surfactants owing to their less toxicity, biodegradability and biocompatibility nature. They are derived from a variety of natural sources, including bacteria, fungi, and plants. In recent years, there has been a surge in interest in producing biosurfactants using alternative substrates, such as different types of organic waste including food processing waste, animal fats and oils and agricultural residues. This emerging trend of utilizing alternative substrates for biosurfactant production has not only broadened their potential applications but has also sparked significant research interest across various sectors. The exploration of new sources for biosurfactants has led to innovative solutions in industries such as bioremediation, food processing, pharmaceuticals, and detergents, highlighting the versatile nature and growing importance of biosurfactants in sustainable development. In bioremediation, they enhance the solubility of pollutants, aiding in their removal from soil and water. In food processing, biosurfactants act as emulsifiers and foaming agents, improving the texture and stability of food products. Additionally, their antimicrobial properties make them valuable as therapeutic agents, while in the detergent industry, they serve as effective cleaning agents with low environmental impact. The present review undertakes a discussion on methods for isolating and characterizing microbial biosurfactants, optimizing microenvironment conditions for enhanced production, and exploring their applicability in various industries. By further researching and implementing biosurfactants, industries can reduce their reliance on harmful chemicals, leading to a more sustainable and environmentally friendly approach to surfactant use.

Keywords: Biosurfactants, Agro-chemical waste, surface active compounds, biodegradable and micro-organism.

Loading

Citation:

How to cite this article: Tamanna Kaundal, Anjali Sharma, and Navneet Batra, Optimization Strategies Towards Enhanced Production of Microbial Surfactants for Diverse Industrial Applications: A Futuristic Approach. International Journal of Industrial Biotechnology and Biomaterials. 2024; 10(01): 11-22p.

How to cite this URL: Tamanna Kaundal, Anjali Sharma, and Navneet Batra, Optimization Strategies Towards Enhanced Production of Microbial Surfactants for Diverse Industrial Applications: A Futuristic Approach. International Journal of Industrial Biotechnology and Biomaterials. 2024; 10(01): 11-22p. Available from:https://journalspub.com/publication/optimization-strategies-towards-enhanced-production-of-microbial-surfactants-for-diverse-industrial-applications-a-futuristic-approach/

Refrences:

  1. Desai, J.D. and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential’, and Molecular Biol., 61(1):47–64.
  2. L. Yuan, Z. Z. Xu et al. (2014) Study on characteristics and harm of surfactants.
  3. Stepanets, O., Solov’eva, G., Mikhailova, A., & Kulapin. (2001) Journal of Analytical Chemistry., 56(3): 290-293.
  4. Makkar, R., Cameotra, S., & Banat, I. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express., 1(1): 5.
  5. Kosaric, N. Biosurfactants in industry (1992) Pure and Applied Chemistry, 64(11): 1731-1737.
  6. Vijayakumar and V. Saravanan, (2015) Biosurfactants-Types, Sources and Applications. Research Journal of Microbiology. 10: 181-192.
  7. Kregiel, D., Berlowska, J., Witonska, I. and Zhang, B. (2017) Saponin-Based, Biological-Active Surfactants from Plants. INTECH., 6: 184-204.
  8. Suchita G. Mahalle and Prerana T. Khachane. (2020) Plant derived surfactants used in cosmetic formulations, 7(11): 552-555.
  9. Desai, J.D. and Banat, I.M. (1997) ‘Microbial production of surfactants and their commercial potential’, and Molecular Biol. Review, 61(1): 47–64.
  10. Santos, D., Rufino, R., Luna, J., Santos, V. and Sarubbo, L. Biosurfactants (2016), Multifunctional Biomolecules of the 21st Century. International Journal of Molecular Sciences. 17(3):401
  11. Ron, E. Z., & Rosenberg, E. (2001). Natural roles of biosurfactants. Minireview. Microbiology, 3(4): 229–236
  12. Cooper,D.G. and Zajic, J.E.( 1980 ). Surface active compounds from micro-organisms. Adv Appl Microbiol., 26 :229-253.
  13. Cooper DG. Biosurfactants. (1986) Microbiol Sci., 3(5): 145-9. PMID: 3153155.
  14. Velikonja, J. and N. Kosaric. (1993) Biosurfactants in Food Applications. In: Biosurfactants: Production: Properties: Applications, Kosaric, N., 16: 419-448.
  15. Van Ginkel, C. (1996) Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation., 7(2): 151-164.
  16. Ron, E.Z. and Rosenberg. (2001). Natural roles of biosurfactants. Microbial., 3: 229-236.
  17. Lang, S. Biological amphiphiles (microbial biosurfactants). (2002) Current Opinion in Colloid & Interface Science., 7(1-2) :12-20.
  18. Rahman, P., & Gakpe, E. (2008). Production, Characterisation and Applications of Biosurfactants-Review. Biotechnology (Faisalabad), 7(2) :360-370.
  19. Cortés-Sánchez, A., Hernández-Sánchez, H., & Jaramillo-Flores, M . (2013), Biological activity of glycolipids produced by microorganisms: New trends and possible therapeutic alternatives. Microbiological Research. 168(1): 22-32.
  20. Gautam, K.K.; Tyagi, (2006) V.K. Microbial Surfactants: A review. Oleo Sci., 55: 155–166.
  21. Daverey, A. and Pakshirajan, (2008). K. Production, Characterization, and Properties of Sophorolipids from the Yeast Candida bombicola using a Low-cost Fermentative Medium. Applied Biochemistry and Biotechnology. 158(3): 663-674.
  22. Liu, J., Hu, M., Xie, Y., & Xu, H. (2019), Study on a Class of Cationic Gemini Surfactants. Tenside Surfactants Detergents. 56(4): 319-326.
  23. Vandana, P., & Singh, D. (2018). Review on Biosurfactant Production and its Application. International Journal of Current Microbiology and Applied Sciences., 7(08): 4228-4241.
  24. McInerney, M., Javaheri, M., & Nagle, D. (1990) Properties of the biosurfactant produced byBacillus licheniformis strain JF-2. Journal Of Industrial Microbiology., 5(2-3): 95-101.
  25. Makkar,R.S.,Cameotra,S.S.,and Banat,I.M. (2011).Advances in utilization of renewable substrates for biosurfactant production. Microbiol.Biotechnol. Express: 1–19.
  26. Chandran, P., & Das, N. (2011) Role of plasmid in diesel oil degradation by yeast species isolated from petroleum hydrocarbon-contaminated soil. Environmental Technology.33(6): 645-652.
  27. McInerney, M., Javaheri, M., & Nagle, D. (1990) Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. Journal Of Industrial Microbiology., 5(2-3): 95-101.
  28. , Assadi, M.m, Jamshidi, Bonakdarpour, B. (2006). Production of Rhamnolipids by Pseudomonas Aeruginosa. Growing on Carbon Sources. International Journal of Environment Science &Technology 3(3): 297-303.
  29. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL. (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol., 37: 402–408.
  30. Patil JR, Chopade BA. (2001). Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J Appl Microbiol., 91(2):290-8.
  31. Phetrong K, H-Kittikun A, Maneerat S. (2008) Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7. Songklanakarin J Sci Technol. 30(3): 297–305.
  32. Bach H, Berdichevsky Y, Gutnick D. (2015) An exocellular protein from the oil degrading Bacillus subtilis using corn steep liquor as culture medium. Microbiol. 6(1): 1–7.
  33. Mukherjee S, Das P, Sen R. (2006) Towards commercial production of microbial surfactants. Trends Biotechnol., 24: 509–515.
  34. Nitschke, M., Costa, S., & Contiero, J. (2011). Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochemistry. 46(3): 621-630.
  35. Thaniyavarn J, Roongsawang N, Kameyama T, Haruki M,i Imanaka T, Morikawa M, Kanaya S.( 2003) Production and characterization of biosurfactants from Bacillus licheniformis F2.2. Biosci Biotechnol Biochem., 67(6): 1239-44.
  36. Matsufugi, M., Nakata, K., and Yoshimoto, A. (1997). High production of rhamnolipids by Pseudomonas aeruginosa growing on ethanol. Lett., 19: 1213–1215.
  37. Nitschke M, Pastore GM. (2006). Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol. 97: 336–341.
  38. Manso Pajarron A, De Koster CG, Heerma W, Schmidt M, Haverkamp J. (1993) Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry., 10: 219–226.
  39. Zinjarde S, Chinnathambi S, Lachke A, Pant A. (1997). Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini-isoelectric focusing unit. Letters in Applied Microbiology., 24(2): 117-121.
  40. Satpute SK, Banpurkar AG, Dhakephalkar PK, Banat IM, Chopade BA. (2010). Methods for investigating biosurfactants and bioemulsifiers: a review. Crit Rev Biotechnol., 30(2): 127-44.
  41. Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M.( 2005). Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol , 98: 456–463.
  42. Aguilar, M.I. HPLC of Peptides and Proteins. (2004) Methods and Protocols in Method Molecular Biology, Vol. 251 (Walker, J., Series Editor), Humana Press, 413 (10): 1172.
  43. Das P, Mukherjee S, Sen R. (2008). Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev., 25: 165-85.
  44. Smyth TJP, Perfumo A, Marchant R, Banat IM. (2009). Isolation and analysis of lipopeptides and high molecular weight biosurfactants: Microbiology of hydrocarbons, oils, lipids, and derived compounds. In Kenneth N. Timmis eds. Springer, 3689-3703.
  45. Manso Pajarron A, De Koster CG, Heerma W, Schmidt M, Haverkamp J. (1993) Structure identification of natural rhamnolipid mixtures by fast atom bombardment tandem mass spectrometry. Glycoconj, 10: 219–226.
  46. Singer, M.E. Microbes and Oil Recovery (1985) Publications In: Bioresource, Zajic, J.E. and E.C. Donaldson (Eds.). E1 Paso, Texas: 19-38.
  47. Raza, Z.A., A. Rehman, M.S. Khan and Z.M. Khalid (2007) Improved production of biosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinery wastes. 18: 115-121.
  48. Desai, J.D. and Banat, I.M. (1997). Microbial production of surfactants and their commercial potential’, and Molecular Biol. Review., 61 (1): 47–64.
  49. Casas, J., García de Lara, S. and García-Ochoa, F. (1997). Optimization of a synthetic medium for Candida bombicola growth using factorial design of experiments. Enzyme and Microbial Technology., 21(3): 221-229.
  50. Kitamoto, D (2008) Naturally Engineered Glycolipid Biosurfactants Leading to Distinctive Self-assembling Properties, 128(5): 695-706.
  51. Mulligan, C (2005) ‘Environmental applications for biosurfactants’, Environmental Pollution., 133 (2): 183–198.
  52. Sarubbo,L.A.,Farias,C.B.B.,andCampos-Takaki,G.M . (2007). Co-utilization of canola oil and glucose on the production of asurfactant by Candida lipolytica. Microbiol. 54 :68–73.
  53. Gudiña, E., Fernandes, E., Rodrigues, A., Teixeira, J. and Rodrigues, L (2015) Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology.
  54. Schobert, B. (1992) The Binding of a Second Divalent Metal Ion Is Necessary for the Activation of ATP Hydrolysis and Its Inhibition by Tightly Bound ADP in the ATPase from Halobacterium saccharouorum. Biol. Chem, 267: 10252–10257.
  55. Epstein,W.(2003). The Roles and Regulation of Potassium in Bacteria. Prog. Nucleic Acid Res. Biol. 75: 293–320.
  56. Dominguez, D.C. (2004). Calcium signalling in bacteria. Microbiol. 54: 291–297
  57. Zinjarde S, Chinnathambi S, Lachke AH, Pant A (1997). Isolation of an emulsifier from Yarrowia lipolytica NCIM 3589 using a modified mini isoelectric focusing unit. Lett Appl Microbiol., 2: 117–121.
  58. Hu, X., Wang, C., & Wang, P. (2015). Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2. Frontiers In Microbiology: 6.
  59. Santos, D., Rufino, R., Luna, J., Santos, V. and Sarubbo, L.Biosurfactants (2016). Multifunctional Biomolecules of the 21st Century. International Journal of Molecular Sciences., 17(3): 401.
  60. Mukherjee, A.K. (2007) ‘Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations’, Letters in Applied Microbiology., 45(3): 330–335.
  61. Helmy, Q., Kardena, E. and.Wisjnuprapto . ‘Kinetic study of oil sludge biodegradation by petrofilic bacteria’, Proceeding of the 2nd Southeast Asian Technical University Consortium (SEATUC) Symposium, Bandung-Indonesia. 2008 :193–7.
  62. Nitschke, M. and Costa, S.G.V.A.O. (2007). Biosurfactants in food industry., 18(5): 252–259.
  63. Brown, M.J. (1991). Biosurfactants for cosmetic applications’, International Journal of Cosmetic Science. 13 (2): 61–64.
  64. Santos, D., Rufino, R., Luna, J., Santos, V. and Sarubbo, L. (2016). Biosurfactants: Multifunctional Biomolecules of the 21st Century. International Journal of Molecular Sciences 17(3): 401
  65. Varvaresou A, Iakovou K. (2015). Biosurfactants in cosmetics and biopharmaceuticals. Letters in Applied Microbiology., 61(3): 214-223.
  66. Banat, I.M., Makkar, R.S. and Cameotra, S.S. (2000) Potential commercial applications of microbial surfactant. Microbio. Biotechnol, 53(5): 495–508.
  67. Zouboulis A, Matis K, Lazaridis N, Golyshin P.( 2003). The use of biosurfactants in flotation: application for the removal of metal ions. Minerals Engineering. 16(11): 1231-1236.
  68. Olivera, N.L., Commendatore, M.G., Moran, A.C. and Esteves, J.L. (2000) (‘Biosurfactan tenhanched degradation of residual hydrocarbons from ship bilge waste’, Industrial Microbiol. Biotecnol, Vol. 25 (2): 70–73.
  69. Mulligan, C. (2005). ‘Environmental applications for biosurfactants’, Environmental Pollution, Vol., 133 (2): 183–198.
  70. Helmy, Q., Kardena, E. and Wisjnuprap (2008) to Kinetic study of oil sludge biodegradation by petrofilic bacteria’, Proceeding of the 2nd Southeast Asian Technical University Consortium (SEATUC) Symposium, Bandung-Indonesia., 193–7.
  71. Suryatmana, P., Kardena, E., Ratnaningsih, E. and Wisjnuprapto. (2005). The role of Azotobacter chroococcum as bio-emulsifier producer to increase biodegradation rate of crude oil hydrocarbon. 11(5): 551-6.
  72. Helmy, Q., Kardena, E. and Wisjnuprapto. (2008). ‘Kinetic study of oil sludge biodegradation by petrofilic bacteria’, Proceeding of the 2nd Southeast Asian Technical University Consortium (SEATUC) Symposium, Bandung-Indonesia: 193–7.
  73. Sabatini D.A., Harwell J.H., Knox R.C. (1999). Surfactant selection criteria for enhanced subsurface remediation. In: Brusseau M.L., Sabatini D.A., Gierke J.S., Annable M.D., editors. Innovative Subsurface Remediation. American Chemical Society; Washington, WA, USA: 8–23
  74. Rita de Cássia F. S. Silva, Darne G. Almeida, Raquel D. Rufino, Juliana M. Luna ,Valdemir A. Santos and Leonie Asfora Sarubbo. (2014) Applications of Biosurfactants in the Petroleum Industry andthe Remediation of Oil Spills. Int. J. Mol. Sci., 15: 12523-12542
  75. Rita de Cássia F. S. Silva, Darne G. Almeida, Raquel D. Rufino, Juliana M. Luna ,Valdemir A. Santos and Leonie Asfora Sarubbo.( 2014). Applications of Biosurfactants in the Petroleum Industry andthe Remediation of Oil Spills. Int. J. Mol. Sci.:15: 12523-12542
  76. Ławniczak, Ł., Marecik, R., & Chrzanowski, Ł. (2013). Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology., 97(6): 2327-2339.
  77. Mulligan,C N.(2005).Environment Applications for Biosurfactants. Environmenntal Pollution133(2):183-198.
  78. Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A, Lojkowska E, Jafra S. (2012). Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol., 94(2): 367–378.
  79. Rodrigues, L., Banat, I., Mei, H., Teixeira, J. and Oliveira, R.( 2006). Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. Journal of Applied Microbiology., 100(3): 470-480.
  80. Rahman, K.S.M., Rahman, T.J., McClean, S., Marchant, R. and Banat, I.M. (2002) ‘Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials’, Prog, 18 (6): 1277–1281.
  81. Singh, P. and Cameotra, S.S. (2004). Potential application of microbial surfactants in biomedical sciences’, Trends in Biotechnology., 22 (3): 143–146.
  82. Das, P., Mukherjee, S., & Sen, R. (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. Journal of Applied Microbiology: 104(6).
  83. Goswami, D., Borah, S., Lahkar, J., Handique, P. and Deka, S. (2015). Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosaDS9 against Colletotrichum falcatum. Journal of Basic Microbiology., 55(11): 1265-1274.
  84. Rodrigues, L., Banat, I.M., Teixeira, J. and Oliveira, R. (2006). ‘Biosurfactants: potential applications in medicine’, Journal of Antimicrobial Chemotherapy. ( 4) : 609–618.
  85. Desmyttere, H., Deweer, C., Muchembled, J., Sahmer, K., Jacquin, J., Coutte, F. and Jacques, P (2019). Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity. Frontiers in Microbiology:
  86. Baltz R.H, Miao, V, Wrigley, S. K (2005). Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep., 22(6): 717–741.
  87. Galié, S., García-Gutiérrez, C., Miguélez, E., Villar, C. and Lombó, F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Frontiers in Microbiology: 9.
  88. Shah, V., Doncel, G., Seyoum, T., Eaton, K., Zalenskaya, I., Hagver, R., Azim, A. and Gross, R. (2005).Sophorolipids, Microbial Glycolipids with Anti-Human Immunodeficiency Virus and Sperm-Immobilizing Activities. Antimicrobial Agents and Chemotherapy., 49(10): 4093-4100.
  89. Rodrigues, L., Teixeira, J., & Oliveira, R. (2006). Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical Engineering Journal. 32(3): 135-142.
  90. Nitschke, M.; Pastore, G.M. (2004). Biosurfactant production by Bacillus subtilis using cassava-processing effluent, Appl. Biochem. and Biotechnol. 112 (3): 163–172.
  91. Rashedi, H., Jamshidi, E., Assadi, M.M. and Bonakdarpour, B. (2006). ‘Biosurfactant production with glucose as a carbon source’, Biochem. Eng. 20(1): 99–106.
  92. Santos, D., Rufino, R., Luna, J., Santos, V., Salgueiro, A. and Sarubbo, L.( 2013 ). Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. Journal of Petroleum Science and Engineering., 105: 43-50.
  93. Mercade, M.E. and Manresa, M.A.( 1994). The use of agroindustrial by-product for biosurfactant production. Journal of American Oil chemists 71(1);61-64
  94. Sarubbo, L., Farias, C., & Campos-Takaki, G . (2007). Co-Utilization of Canola Oil and Glucose on the Production of a Surfactant by Candida lipolytica. Current Microbiology., 54(1) : 68-73.
  95. Dubey, K. and Juwarkar, A. (2001). Distillery and curd whey waste as viable alternative sources for biosurfactant production. World Journal of Microbiology and Biotechnology.,17(1): 61–69
  96. Dubey,K.V,Juwarkar,A.A.,andSingh,S.K.(2005)Bioseparationsanddownstreamprocessing.Adsorption vatedcarbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnol. Prog. 21:860–867.
  97. Rodrigues, L., Moldes, A., Teixeira, J., & Oliveira, R.( 2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal., 28(2):109-116.