Nanoparticles for Broiler Nutrition: Enhancing Growth, Feed Efficiency, Health, and Welfare of the Broiler Chicken

Volume: 11 | Issue: 1 | Year 2025 | Subscription
International Journal of Nanomaterials and Nanostructures
Received Date: 02/28/2025
Acceptance Date: 03/07/2025
Published On: 2025-04-07
First Page:
Last Page:

Journal Menu

By: Md. Emran Hossain

Abstract

Nanotechnology offers transformative potential for broiler nutrition by enabling enhanced nutrient delivery, efficiency, and health outcomes in poultry production. This review explores the applications, mechanisms, and impacts of incorporating nanoparticles, such as nano-minerals (e.g., zinc, selenium, and copper), nano-encapsulated bioactives, and other functional nano-additives, into broiler diets. Nanoparticles, owing to their increased surface area and enhanced bioavailability, have shown promise in improving nutrient absorption, promoting immune function, and supporting overall growth and development in broilers. Specifically, nano-minerals may significantly reduce required dietary inclusion levels, minimizing environmental waste while improving mineral retention and utilization. Moreover, the use of nano-encapsulation for vitamins, antioxidants, and other bioactive compounds has demonstrated beneficial effects on gut health, oxidative stability, and resilience against stressors. While preliminary studies support the efficacy of nanoparticles in improving performance metrics, challenges regarding safety, regulatory approval, and potential bioaccumulation must be addressed to ensure safe integration into commercial practice. This review synthesizes current research on the role of nanoparticles in broiler nutrition, highlights emerging benefits, and identifies critical gaps, providing a foundation for advancing sustainable, welfare-focused poultry production through nanotechnology.

Keywords: Broiler, feed efficiency, nano feed additives, nanotechnology, nutrient bioavailability, sustainable broiler production

Loading

Citation:

How to cite this article: Md. Emran Hossain, Nanoparticles for Broiler Nutrition: Enhancing Growth, Feed Efficiency, Health, and Welfare of the Broiler Chicken. International Journal of Nanomaterials and Nanostructures. 2025; 11(1): -p.

How to cite this URL: Md. Emran Hossain, Nanoparticles for Broiler Nutrition: Enhancing Growth, Feed Efficiency, Health, and Welfare of the Broiler Chicken. International Journal of Nanomaterials and Nanostructures. 2025; 11(1): -p. Available from:https://journalspub.com/publication/uncategorized/article=16052

Refrences:

  1. A. Patra and M. Lalhriatpuii, “Progress and Prospect of Essential Mineral Nanoparticles in Poultry Nutrition and Feeding—a Review,” Biol. Trace Elem. Res., vol. 197, no. 1, pp. 233–253, 2020, doi: 10.1007/s12011-019-01959-1.
  2. 2. D. Rajendran, P. B. Ezhuthupurakkal, R. Lakshman, N. K. S. Gowda, A. Manimaran, and S. B. Rao, “Application of encapsulated nano materials as feed additive in livestock and poultry: a review,” Vet. Res. Commun., vol. 46, no. 2, pp. 315–328, 2022, doi: 10.1007/s11259-022-09895-7.
  3. 3 N. B. Singh and C. U. Onuegbu, “Nano-Minerals as Livestock Feed Additives,” in 21st Century Nanoscience – A Handbook, CRC Press, 2020, pp. 20-1-20–12. doi: 10.1201/9780429351587-20.
  4. K. Ognik, A. Stępniowska, E. Cholewińska, and K. Kozłowski, “The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium,” Poult. Sci., vol. 95, no. 9, pp. 2045–2051, 2016.
  5. A. Scott, K. P. Vadalasetty, A. Chwalibog, and E. Sawosz, “Copper nanoparticles as an alternative feed additive in poultry diet: A review,” Nanotechnol. Rev., vol. 7, no. 1, pp. 69–93, 2018, doi: 10.1515/ntrev-2017-0159.
  6. M. S. De Almeida, E. Susnik, B. Drasler, P. Taladriz-Blanco, A. Petri-Fink, and B. Rothen-Rutishauser, “Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine,” Chem. Soc. Rev., vol. 50, no. 9, pp. 5397–5434, 2021.
  7. R. Mahmoud, B. Salama, F. A. Safhi, I. Pet, E. Pet, and A. Ateya, “Assessing the Impacts of Different Levels of Nano-Selenium on Growth Performance, Serum Metabolites, and Gene Expression in Heat-Stressed Growing Quails,” Vet. Sci., vol. 11, no. 6, p. 228, 2024, doi: 10.3390/vetsci11060228.
  8. B. Dumlu, “Importance of Nano-Sized Feed Additives in Animal Nutrition,” J. Agric. Prod., vol. 5, no. 1, pp. 55–72, 2024, doi: 10.56430/japro.1433614.
  9. W. A. Abd El-Ghany, M. Shaalan, and H. M. Salem, “Nanoparticles applications in poultry production: an updated review,” Worlds. Poult. Sci. J., vol. 77, no. 4, pp. 1001–1025, 2021, doi: 10.1080/00439339.2021.1960235.
  10. H. G. Abo-Al-Ela, S. El-Kassas, K. El-Naggar, S. E. Abdo, A. R. Jahejo, and R. A. Al Wakeel, “Stress and immunity in poultry: light management and nanotechnology as effective immune enhancers to fight stress,” Cell Stress Chaperones, vol. 26, no. 3, pp. 457–472, 2021, doi: 10.1007/s12192-021-01204-6.
  11. M. I. Anwar, M. M. Awais, M. Akhtar, M. T. Navid, and F. Muhammad, “Nutritional and immunological effects of nano-particles in commercial poultry birds,” Worlds. Poult. Sci. J., vol. 75, no. 2, pp. 261–272, 2019.
  12. 12 . F. Nabi et al., “Nutraceutical role of selenium nanoparticles in poultry nutrition: a review,” Worlds. Poult. Sci. J., vol. 76, no. 3, pp. 459–471, 2020, doi: 10.1080/00439339.2020.1789535.
  13. J. Liu et al., “Dietary supplementation with nano-composite of copper and carbon on growth performance, immunity, and antioxidant ability of yellow-feathered broilers,” J. Anim. Sci., vol. 101, p. skad362, 2023.
  14. M. K. Bami, M. Afsharmanesh, M. Espahbodi, and E. Esmaeilzadeh, “Effects of dietary nano-selenium supplementation on broiler chicken performance, meat selenium content, intestinal microflora, intestinal morphology, and immune response,” J. Trace Elem. Med. Biol., vol. 69, p. 126897, 2022.
  15. M. A. Laledashti, A. A. Saki, A. A. Rafati, and M. Abdolmaleki, “Effect of in-ovo feeding of iron nanoparticles and methionine hydroxy analogue on broilers chickens small intestinal characteristics,” Acta Sci. – Anim. Sci., vol. 42, no. 1, p. e46903, 2020, doi: 10.4025/actascianimsci.v42i1.46903.
  16. M. J. L. Marcos, J. D. Cauilan, D. R. A. Galam, and A. G. C. Mangoba, “Comparison of Small Intestinal Mucosa of Broiler Chicken Fed With Centrosema (Centrosema pubescens L.) Leaf Meal,” Eur. J. Agric. Food Sci., vol. 1, no. 2, 2019, doi: 10.24018/ejfood.2019.1.2.11.
  17. J. Zhang et al., “Effects of Zinc Oxide Nanoparticles on Growth, Intestinal Barrier, Oxidative Status and Mineral Deposition in 21-Day-Old Broiler Chicks,” Biol. Trace Elem. Res., vol. 200, no. 4, pp. 1826–1834, 2022, doi: 10.1007/s12011-021-02771-6.
  18. Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines. 2022 Jan 22;10(2):172.
  19. H. Mohd Yusof, N. Abdul Rahman, R. Mohamad, U. H. Zaidan, M. A. Arshad, and A. A. Samsudin, “Effects of dietary zinc oxide nanoparticles supplementation on broiler growth performance, zinc retention, liver health status, and gastrointestinal microbial load,” J. Trace Elem. Miner., vol. 4, p. 100072, 2023, doi: 10.1016/j.jtemin.2023.100072.
  20. T. Bruna, F. Maldonado-Bravo, P. Jara, and N. Caro, “Silver nanoparticles and their antibacterial applications,” Int. J. Mol. Sci., vol. 22, no. 13, p. 7202, 2021, doi: 10.3390/ijms22137202.
  21. R. Tolve, F. Tchuenbou-Magaia, M. Di Cairano, M. C. Caruso, T. Scarpa, and F. Galgano, “Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods,” Anim. Feed Sci. Technol., vol. 279, p. 115036, 2021.
  22. L. L. Duffy, M. J. Osmond-McLeod, J. Judy, and T. King, “Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter,” Food Control, vol. 92, pp. 293–300, 2018, doi: 10.1016/j.foodcont.2018.05.008.
  23. E. Assadpour and S. Mahdi Jafari, “A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 19, pp. 3129–3151, 2019, doi: 10.1080/10408398.2018.1484687.
  24. M. Pateiro et al., “Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products,” Molecules, vol. 26, no. 6, p. 1547, 2021, doi: 10.3390/molecules26061547.
  25. S. A. Abdelnour et al., “Nanominerals: fabrication methods, benefits and hazards, and their applications in ruminants with special reference to selenium and zinc nanoparticles,” Animals, vol. 11, no. 7, p. 1916, 2021.
  26. S. Gangadoo, D. Stanley, R. J. Hughes, R. J. Moore, and J. Chapman, “Nanoparticles in feed: Progress and prospects in poultry research,” Trends Food Sci. Technol., vol. 58, pp. 115–126, 2016, doi: 10.1016/j.tifs.2016.10.013.
  27. I. Leinonen and I. Kyriazakis, “How can we improve the environmental sustainability of poultry production?,” Proc. Nutr. Soc., vol. 75, no. 3, pp. 265–273, 2016, doi: 10.1017/S0029665116000094.
  28.   M. Ghazaghi, M. Mehri, M. Asghari-Moghadam, and M. Mehri, “A novel methionine nanoparticle in broiler chickens: Bioavailability and requirements,” PLoS One, vol. 19, no. 4 April, p. e0302230, 2024, doi: 10.1371/journal.pone.0302230.
  29.   B. Hosseintabar-Ghasemabad et al., “Nano selenium in broiler feeding: physiological roles and nutritional effects,” AMB Express, vol. 14, no. 1, p. 117, 2024, doi: 10.1186/s13568-024-01777-2.
  30.   J. Zhou et al., “Nano vitamin E improved the antioxidant capacity of broiler chickens,” J. Anim. Sci., vol. 102, p. skae095, 2024, doi: 10.1093/jas/skae095.
  31.  I. Ahmad et al., “Comprehensive Approaches of Nanoparticles for Growth Performance and Health Benefits in Poultry: An Update on the Current Scenario,” Biomed Res. Int., vol. 2022, no. 1, p. 9539908, 2022, doi: 10.1155/2022/9539908.
  32.    P. S. Hooda, A. C. Edwards, H. A. Anderson, and A. Miller, “A review of water quality concerns in livestock farming areas,” Sci. Total Environ., vol. 250, no. 1–3, pp. 143–167, 2000, doi: 10.1016/S0048-9697(00)00373-9.
  33.  E. Kulak, K. Ognik, A. Stpniowska, and I. Sembratowicz, “The effect of administration of silver nanoparticles on silver accumulation in tissues and immune and antioxidant status of chickens,” J. Anim. Feed Sci., vol. 27, no. 1, pp. 44–54, 2018, doi: 10.22358/jafs/84978/2018.
  34.   R. B. Bist, S. Subedi, L. Chai, and X. Yang, “Ammonia emissions, impacts, and mitigation strategies for poultry production: A critical review,” J. Environ. Manage., vol. 328, pp. 1–31, 2023, doi: 10.1016/j.jenvman.2022.116919.
  35.   S. Hassan, F. ul Hassan, and M. S. ur Rehman, “Nano-particles of Trace Minerals in Poultry Nutrition: Potential Applications and Future Prospects,” Biol. Trace Elem. Res., vol. 195, no. 2, pp. 591–612, 2020, doi: 10.1007/s12011-019-01862-9.
  36. A. S. A. Aljumaily and T. K. H. Aljumaily, “The effect of the addition of nano selenium and vitamin E on productive performance and the characteristics of the physical and chemical carcass of broilers,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2021, p. 12017.
  37.   M. Alagawany et al., “Use of chemical nano-selenium as an antibacterial and antifungal agent in quail diets and its effect on growth, carcasses, antioxidant, immunity and caecal microbes,” Animals, vol. 11, no. 11, p. 3027, 2021.
  38.  K. Bahrampour, N. Ziaei, and O. A. Esmaeilipour, “Feeding nano particles of vitamin C and zinc oxide: Effect on growth performance, immune response, intestinal morphology and blood constituents in heat stressed broiler chickens,” Livest. Sci., vol. 253, p. 104719, 2021.
  39.   E. Mohammadi, H. Janmohammadi, M. Olyayee, J. A. Helan, and S. Kalanaky, “Nano selenium improves humoral immunity, growth performance and breast-muscle selenium concentration of broiler chickens,” Anim. Prod. Sci., vol. 60, no. 16, pp. 1902–1910, 2020, doi: 10.1071/AN19581.
  40.   R. J. Julian, “Rapid Growth Problems: Ascites and Skeletal Deformities in Broilers,” Poult. Sci., vol. 77, no. 12, pp. 1773–1780, 1998, doi: 10.1093/ps/77.12.1773.
  41.   A. Matuszewski, M. Łukasiewicz, and J. Niemiec, “Calcium and phosphorus and their nanoparticle forms in poultry nutrition,” Worlds. Poult. Sci. J., vol. 76, no. 2, pp. 328–345, 2020, doi: 10.1080/00439339.2020.1746221.
  42. 42 Betanzos, S. A. Real-Sandoval, and D. Quintanar-Guerrero, “Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage,” Molecules, vol. 27, no. 23, p. 8187, 2022, doi: 10.3390/molecules27238187.
  43.   M. Vijayakumar and V. Balakrishnan, “Nanoparticles supplementation on growth performance of broiler chicken,” Indian J Sci Technol, vol. 7, pp. 1149–1154, 2014.
  44.   Y. A. R. Almeldin, A. E. Eldlebshany, E. A. Elkhalek, J. Lohakare, and A. A. A. Abdel-Wareth, “Assessment of dietary supplementation of green iron oxide nanoparticles: impact on growth performance, ammonia emissions, carcass criteria, tissue iron content, and meat quality in broiler chickens under hot climate conditions,” Front. Vet. Sci., vol. 11, p. 1393335, 2024, doi: 10.3389/fvets.2024.1393335.
  45.  S. Bhagat and S. Singh, “Nanominerals in nutrition: Recent developments, present burning issues and future perspectives,” Food Res. Int., vol. 160, p. 111703, 2022, doi: 10.1016/j.foodres.2022.111703.
  46.  I. Michalak et al., “The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry,” Vet. Q., vol. 42, no. 1, pp. 68–94, 2022, doi: 10.1080/01652176.2022.2073399.
  47.    Е. Yausheva, S. Miroshnikov, and Е. Sizova, “Intestinal microbiome of broiler chickens after use of nanoparticles and metal salts,” Environ. Sci. Pollut. Res., vol. 25, no. 18, pp. 18109–18120, 2018, doi: 10.1007/s11356-018-1991-5.
  48.   C. Sun, K. Hu, D. Mu, Z. Wang, and X. Yu, “The Widespread Use of Nanomaterials: The Effects on the Function and Diversity of Environmental Microbial Communities,” Microorganisms, vol. 10, no. 10, p. 2080, 2022, doi: 10.3390/microorganisms10102080.
  49.  Z. Lei and A. karim, “The challenges and applications of nanotechnology against bacterial resistance,” J. Vet. Pharmacol. Ther., vol. 44, no. 3, pp. 281–297, 2021, doi: 10.1111/jvp.12936.
  50.   O. Olgun and A. Ö. Yildiz, “Effects of dietary supplementation of inorganic, organic or nano zinc forms on performance, eggshell quality, and bone characteristics in laying hens,” Ann. Anim. Sci., vol. 17, no. 2, pp. 463–476, 2017.
  51.  C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: Sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. MR17–MR71, 2007, doi: 10.1116/1.2815690.
  52.   Z. Younas et al., “Mechanistic Approaches to the Application of Nano-Zinc in the Poultry and Biomedical Industries: A Comprehensive Review of Future Perspectives and Challenges,” Molecules, vol. 28, no. 3, 2023, doi: 10.3390/molecules28031064.
  53.  G. Singh, N. Thakur, and R. Kumar, “Nanoparticles in drinking water: Assessing health risks and regulatory challenges,” Sci. Total Environ., vol. 949, p. 174940, 2024, doi: 10.1016/j.scitotenv.2024.174940.