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Abstract 

This article explores the mathematical framework for developing consensus algorithms in multi-agent 

systems, using both fixed and switching communication graphs. Consensus refers to the agreement 

among agents achieved by sharing local information. Local interactions realize this global objective, a 

key issue in multi-agent control, also known as cooperative control. The consensus equation can be 

formulated in either continuous or discrete time domains. This article focuses on deriving the consensus 

equation in the discrete time domain using Perron-Frobenius theory. The discrete time consensus 

equation is dependent upon the underline structure of the communication graph. For achieving 

consensus, two types of communication graphs are considered: fixed communication graphs and 

switching communication graphs. Consensus values for switching communication graphs and fixed 

communication graphs are derived for random and fixed initial state information of agents. The 

convergence of the consensus algorithm depends upon the eigenstructure of the Frobenius matrix, and 

it is constructed for fixed and switch communication graphs. The eigenvalues of the Frobenius matrix 

lie within the unit circle, so the trajectory of state information of each agent is exponentially stable and 

converges to a common value known as the consensus value at steady state. The consensus value for 

fixed and switching graphs is the average of their initial state information, but the time required for 

convergence of the algorithm in the case of switching graphs is greater than that for fixed 

communication graphs. This theoretical finding is illustrated via simulations. 

 

Keywords: Multiple agent system (MAS), consensus, graph Laplacian, Frobenius matrix and algebraic 

graph theory 

 

 

INTRODUCTION 

For two decades, there has been active study in the field of multi-agent system (MAS) control [1]. A 

distributed technique and a centralized approach are 

typically used to control MAS systems. 

 

The distributed strategy is increasingly favored 

due to physical constraints such as limited wireless 

communication range, restricted sensing areas, 

narrow bandwidth, large vehicle sizes, and the 

complex dynamics of each agent [2]. Managing and 

controlling these factors is challenging, which is 

why distributed control in multi-agent systems 

(MAS) is a promising research area. Several survey 

papers [3], [4], and [5] detail recent advancements 

in MAS coordination and control. Consensus is a 

crucial issue in MAS, and various information flow 

restrictions have been studied to explore different 

consensus techniques [6], [7], [8], [9], and [10]. 

Additionally, monographs [11], [12], and [13] offer 
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recent reviews and progress reports. This article focuses on designing a consensus algorithm for MAS 

with both fixed and switching topologies using discrete Perron-Frobenius theory and includes a 

convergence analysis comparing consensus algorithms for switching versus fixed topologies. 

 

Notations and Symbols 

Matrices are denoted by capital, boldface letters, while their elements are represented by lowercase 

letters. Rn x n indicates a matrix of square dimension with real entries. All N agents are interconnected 

to each other using a specific structure known as network topology. Matrix F is known as Frobenius 

matrix, and ʎ, 1, w1 are respectively, symbols used for eigenvalues right eigen vector and left eigen 

vector of matrix F. The matrices F, D, and A, respectively, stand for the Frobenius matrix, the diagonal 

matrix, and the adjacency matrix. 

 

The article is arranged as follows: Section II describes algebraic graph theory as a prerequisite tool 

for designing consensus algorithms. Formulation of problem is explained in Section III. Section IV 

describes the simulation result, and the concluding remarks are explained in section V. 

 

ALGEBRIAC GRAPH THEORY 

To represent the MAS in mathematical form, a state space equation is required. Graph theory and 

matrix theory, along with the state space model, are the primary tools used in designing cooperative 

control of MAS. 

 

Graph Theory 

A communication graph (GN) is a representation of a set of agents in mathematics, specifically in 
graph theory, where specific pairs of agents are linked together by links. Mathematical abstractions 

known as vertices and edges, which connect certain pairings of vertices, are used to depict connected 
agents. Either directed or undirected edges are possible. A graph’s neighbors are its vertices that are 

directly related to one another; these are denoted mathematically by the symbol Ni for agent i. A path 
connecting every pair of nodes in a graph is said to be linked. A linked diagram has no accessible 

vertices. A graph is an algebraically defined structure used to model a network topology in a network 
of interconnected agents, and it is given by GN = (V, E). A set by agents is denoted by V = {v1, v2, …, 

vN}. Furthermore, the set of edges E denotes the relationships amongst agents, and it is represented as 

E = (vi , vj) [13]. The spanning tree is another key idea in graph theory. We refer to a directed spanning 
tree when there is at least one corner point in a network with a route that is directed to every other agent. 

The direction of information flow from one agent to another, indicated by the edges, allows the diagram 
to be classified. One can have directed or undirected graphs. 

 

Directed graph: A directed graph is characterized by edges that have a certain direction. Nodes are 

connected by edges, and certain paths cannot be followed back to the starting node. Arrows on the edges 
of directional diagrams indicate the direction of information flow. The source node needs to discover a 

different path back to the start node; it can only utilize the address provided to get to the destination 
node. A directed graph may occasionally experience issues with the point of no return. A 

communication network obstruction may result from this. Moreover, a directed graph is defined as a 
series of directed edges in the form (v1, v2), (v2, v3),... (vN–1, vN), where vi belongs to V.  

 

Undirected graph: An undirected graph is one where the edges lack a specified direction. In such a 

graph, communication links permit information to flow in both directions. In the case of undirected 
graphs, A = AT, here matrix A is known as the connectivity matrix, and consequently, the matrix is 

symmetric about the diagonal. The edge of a graph is represented by an ordered pair, which may be 

expressed as (vi, vj). This only indicates that agent i immediately connects to agent j and communicates 
its information to it. An undirected graph (vi, vj). indicates that the two agents are interconnected and 

can exchange information in both directions. It is noteworthy to emphasize that in an undirected 
communication graph, redundant information from the same node from different sources overloads the 

communication channel, yet the information is always available when needed. 
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Graph Matrices 

Graph matrices play a major role in consensus convergence for networked multi-agent systems, in 

addition to graph theory. A matrix is referred to as a non-negative matrix when all its entries are positive. 

In the same way, if every element in the vector is positive, the vector’s shape is also not negative. The 

degree matrix is among the most crucial matrices in the construction of consensus methods. The matrix 

of degrees D = [dij] of a graph GN is essentially a diagonal matrix with a degree of vertex, or the quantity 

of agents that are close to i. An adjacency matrix is a matrix that offers details on the connections 

between its constituent parts. For a graph GN its mathematical adjacency matrix is represented by A = 

[aij] and is given by 

𝐴 = { 1, 𝑖𝑓 (𝑣𝑖, 𝑣𝑗)  ∈  𝐸      0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Matrix I is the identity matrix, and it has dimensions M x N and M = N. The size of the matrix 

depends on the number of agents present in a graph. The matrix F is stochastic. Stochastic matrices 

have an important role in the study of graphs. We say a matrix F is nonnegative if F ≥ 0 if all its elements 

are nonnegative. The matrix F is positive, F > 0, if it is all elements are strictly positive. If every row 

sum in a matrix F equals 1, then the matrix is row stochastic. If all the sums of the rows and columns 

of a matrix F equal 1, then it is doubly stochastic. Two row stochastic matrices E and F have a row 

stochastic product because E F 1 = E 1 = 1. A stochastic matrix’s greatest eigenvalue is 1, and if matrix 

F ≥ 0 is row stochastic if and only if 1 is an eigenvector for the eigenvalue 1. Let square n x n matrix F 

≥ 0 have all row sums equal to a constant c > 0 then 

• ρ(F) = c, and it is an eigenvalue of F with eigenvector 1. 

• If diagonal elements of matrix F are positive, i.e., fii > 0 for all i, then |λ| < c for all eigenvalues λ ≠ c. 

 

Let A be the adjacency matrix of a graph G, then 

• λ1 = ρ(A) = c is a simple eigenvalue if and only if A. Then rank(A)=N-1. 

• If A has a spanning tree and if it is all diagonal elements, i.e., aii > 0 for all i, then λ1 = ρ(A) = c is 

unique. 

 

FORMULATION OF PROBLEM 

The mathematical formulation of the discrete time consensus algorithm is described in this section. 

Every agent i in a MAS is equipped with the discrete time state space equation shown below 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) +  𝜇𝑖(𝑘) (1) 

𝑥𝑖(𝑘) and 𝑥𝑖(𝑘 + 1) is the state of ith agent at kth and at (k + 1)th time instance respectively. 𝜇𝑖(𝑘) is 

the local control input of ith agent and also 𝑥𝑖(𝑘), 𝑥𝑖(𝑘 + 1) and𝜇𝑖(𝑘) ∈ 𝑅. In section III-A, the Perron 

discrete time system is used to obtain the discrete time consensus equation. 

 

A Discrete-Time Consensus Control Protocol with Normalized Control 

Suppose that agent i’s normalized control input is as follows: 

𝜇𝑖(𝑘)  =  
1

1+𝑑𝑖
∑𝑗∈𝑁𝑖

𝑎𝑖𝑗  [𝑥𝑗(𝑘)  −  𝑥𝑗(𝑘)] (2) 

where 𝑑𝑖  stands for the in-degree of agent i and 𝑎𝑖𝑗 stands for components of matrix A. When 

Equation (2) is substituted in Equation (1), we obtain 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) +
1

1+𝑑𝑖
∑𝑗∈𝑁𝑖

𝑎𝑖𝑗[𝑥𝑗(𝑘) − 𝑥𝑗(𝑘)] (3) 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) +  
1

1+𝑑𝑖
(−𝑥𝑖(𝑘) ∑𝑗∈𝑁𝑖

𝑎𝑖𝑗  + ∑𝑗∈𝑁𝑖
𝑎𝑖𝑗𝑥𝑗(𝑘) ) (4) 

 

From [13], ∑𝑗∈𝑁𝑖
𝑎𝑖𝑗 = 𝑑𝑖 and if j = 1, 2, …., N then Equation (4) becomes 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) +  
1

1+𝑑𝑖
 (−𝑥𝑖(𝑘)𝑑𝑖  + [𝑎𝑖1, ⋯ , 𝑎𝑖𝑁] [𝑥1(𝑘)  ⋮  𝑥𝑁(𝑘) ]) (5) 
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Equation (5) is an ith agent discrete state space equation that is globally transformed into a matrix form as 

𝑥(𝑘 + 1) = 𝐼𝑥(𝑘) +
𝐼

𝐼+𝐷
(−𝑥(𝑘)𝐷 + 𝐴𝑥(𝑘)) (6) 

 

The identity matrix I in this case is equal to 1 in a scalar and further simplifying Equation (6) we get 

𝑥(𝑘 + 1) = [𝐼 +
𝐼

𝐼+𝐷
(−(𝐷 − 𝐴))] 𝑥(𝑘) (7) 

 

Simplifying Equation (7), we obtained consensus equation in discrete time domain as 

𝑥(𝑘 + 1) =  (𝐼 + 𝐷)−1 (𝐼 + 𝐴)𝑥(𝑘) ≡ 𝐹𝑥(𝑘) (8) 

 

Corresponding discrete time consensus equation of switching communication graph can easily be 

derived from Equation (8) as 

𝑥(𝑘 + 1)  =  (𝐼 + 𝐷)−1 (𝐼 + 𝐴)𝑥(𝑘)  ≡ 𝐹(𝑘)𝑥(𝑘) (9) 

Here x(k) and x(k + 1) ∈ 𝑅𝑁. F and F(k) is known as the Frobenius matrices for fixed and switching 

communication graphs. Matrix F and F(k) have N eigenvalues out of which one eigenvalue lies on the 

unit circle and N –1 eigenvalues mapped inside the unit circle of the complex z-plane. According to the 

Gershgorin circle theorem, N –1 eigenvalues of matrix F are found inside the unit circle; see the shaded 

area of Figure 1. One eigenvalue on the unit circle indicates that the discrete system given by equations 

(8) and (9) is Type-1 and moderately stable, and the state of all agents approaches a steady state value 

as time reaches infinity [13]. 

 

 
Figure 1. Region of eigenvalues of Frobenius matrix F. 

 

F is a row stochastic matrix because F has row sum is equal to one; hence, we write F1 = 1, where 1 

is the right eigenvector of matrix F associated with eigenvalue λ1 = 1. 

 

B Analysis of Steady States 

Steady state convergence of the discrete time consensus algorithm is described in this section. 

Assume that w1  = [p1, p2,……, pN ] is the N-dimensional left eigenvector of the matrix F for λ1 = 1. 

When the system achieves a steady state, then we have xss = F xss. Equation (8) converges to a consensus 

value c > 0 if network topology consists of a directed spanning tree [13]. Also, if w1 is multiplied by 

both sides of the Equation (8) and w1
T F= w1

T then we have 

𝑤1
𝑇𝑥(𝑘 + 1) =  𝑤1

𝑇𝐹𝑥(𝑘) = 𝑤1
𝑇𝑥(𝑘) = ∑𝑖 𝑝𝑖𝑥𝑖   (10) 

 

The quantity ∑𝑖 𝑝𝑖𝑥𝑖 is not time variant for all time instances k. Therefore, initial state information 

of all agents asymptotically reached consensus value c > 0 and it is given as, 
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𝐶 =
∑𝑁

𝑖=1 𝑝𝑖𝑥𝑖(0)

∑𝑁
𝑖=0 𝑝𝑖

 (11) 

 

SIMULATION RESULT 

Consider a fixed communication graph shown in Figure 2 and consider all edge weight aij = 1. Then 
adjacency matrix A, diagonal matrix D, and identity matrix I are given by 

 
𝐴 = ( 0 1 0 0 0 1 1 0 0 ) 𝐷 = ( 1 0 0 0 1 0 0 0 1 ) 𝐼 = ( 1 0 0 0 1 0 0 0 1 ) (12) 

 
Finally, Frobenius matrix F for the Figure 2 is given by 

𝐹 = (𝐼 + 𝐷)−1 (𝐼 + 𝐴) =  (0.5 0.5 0 0 0.5 0.5 0.5 0 0.5)  (13) 

 

 
Figure 2. Fixed communication graph G. 
 

Consider switching communication graphs as G1, G2, and G3 shown in Figure 3, Figure 4, and Figure 
5, respectively.  
 

 

  

Figure 3. Graph G1. Figure 4. Graph G2. Figure 5. Graph G3. 

 
Then adjacency matrix A, diagonal matrix D, and identity matrix I for graph G1 is given by  

𝐴 = ( 0 1 0 0 0 1 1 0 0)     𝐷 = ( 1 0 0 0 0 0 0 0 1)     𝐼 = ( 1 0 0 0 1 0 0 0 1) (14) 

and corresponding Frobenius matrix F1 for the Figure 3 is given by 

𝐹1 = (0.5 0.5 0 0 1 0 0.5 0 0.5). (15) 

 
Then adjacency matrix A, diagonal matrix D, and identity matrix I for graph G2 is given by  

𝐴 = ( 0 0 0 0 0 1 1 0 0) 𝐷 = ( 0 0 0 0 1 0 0 0 1) 𝐼 = ( 1 0 0 0 1 0 0 0 1) (16) 

and corresponding Frobenius matrix F2 is given by 

𝐹2 = (1 0 0 0 0.5 0.5 0.5 0 0.5). (17) 

 

Then adjacency matrix A, diagonal matrix D, and identity matrix I for graph G3 is given by 

𝐴 = ( 0 1 0 0 0 1 0 0 0 ) 𝐷 = ( 1 0 0 0 1 0 0 0 0 ) 𝐼 = ( 1 0 0 0 1 0 0 0 1). (18) 

and corresponding Frobenius matrix F3 is given by 

𝐹3 = (1 0 0 0 0.5 0.5 0.5 0 0.5). (19) 

Eigen values for Frobenius matrix F are λ12 = 0.25 ± 0.433i and λ3 = 1, and corresponding left 

eigenvectors elements for Frobenius matrix F are p1 = 1, p2 = 0 and p3 = 0. Here initial state information 

1 2 3 

1 2 3 

1 2 3 1 2 3 
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for agents is assumed to be xi(0) = [0.811584,- 0.746026, 0.629447] for agent i = 1, 2 and 3 respectively, 

using equation (11) consensus value determined as 0.21 which is achieved in 6 seconds and same is 

plotted in Figure 6. However, for switching communication graph Frobenius matrices are F1, F2 and F3. 

For F1 the eigen values are λ12 = 0.5 and λ3 = 1 and corresponding eigen vectors are pi = {0, 1, 0}. For 

F2 the eigen values are λ12 = 0.5 and λ3 = 1 and corresponding eigen vectors are pi = {1, 0, 0}. For F3 

the eigen values are λ12 = 0.5 and λ3 = 1 and corresponding eigen vectors are pi = {0, 0, 1}. This structure 

G1, G2 and G3 repeats 21 times then using Equation (11) consensus value determined as 0.31 which is 

achieved in 10 seconds and same is plotted in Figure 7. Considering agent number as initial state 

information for fixed and switching communication graph as x1(0) = 1, x2(0) = 2 and x3(0) = 3 then for 

fixed communication graph consensus value is 2 and it is achieved in 10 seconds. For switching 

communication graph consensus value is 1.76 and it is achieved in 15 seconds. Figures 8 and 9 show 

consensus convergence for fixed initial state information xi = {1, 2, 3}.  

 

  

Figure 6. Plot for G. Figure 7. Plot for G1, G2 and G3. 

 

 

  
Figure 8. Plot for G. Figure 9. Plot for G1, G2 and G3. 

 

However, the simulation results displayed in (Figure 6) show that the state information of all agents 

converges to a consensus value of 0.21 in 6 seconds. In contrast, (Figure 7) demonstrates that the state 

information of all agents converges to a consensus value of 0.31 in 10 seconds. (Figure 8) shows that 

the consensus value reaches 2 in 10 seconds, while (Figure 9) indicates convergence to a consensus 

value of 1.76 in 15 seconds. Comparing Figures 6 through 9, it is evident that the consensus value for 
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switching topologies is achieved more slowly than for fixed topologies. This delay is attributed to link 

failures in graphs G1, G2, and G3, as referenced in (Figures 3, 4, and 5). Random initial state 

information of each agent selected in between the range of +1 to -1 and fixed initial state information 

is considered as Xi = {1, 2, 3}. Table 1 shows a convergence comparison between fixed topology and 

switching topology. Clearly, convergence time for switching topology is larger than fixed topology. 

 

Table 1. Comparative analysis of algorithm convergence. 

Type of Topology Convergence Time Consensus Value 

Fixed topology 6 Sec 0.21 

Switching topology 10 Sec 0.31 

 

CONCLUSION 

In conclusion, this article provides a detailed mathematical framework for consensus algorithms in 

multi-agent systems, focusing on both fixed and switching communication graphs in the discrete time 

domain. The study shows that consensus, achieved through local interactions among agents, is 

influenced by the structure of the communication graph. Using Perron-Frobenius theory, the consensus 

equations were derived, and it was demonstrated that convergence is governed by the eigenstructure of 

the Frobenius matrix. The eigenvalues lie within the unit circle, ensuring exponential stability and 

convergence to a common consensus value. Although the consensus value is the average of the initial 

states of the agents in both fixed and switching graphs, the time required for convergence is longer for 

the switching graph. These theoretical findings were supported by simulations. 
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