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Abstract 

This paper presents a comparative study of Air Quality Index (AQI) levels in five eastern Indian states–

Arunachal Pradesh, Assam, Meghalaya, Nagaland, and Tripura. Using historical data, the study 

explores the concentration of key pollutants, including PM2.5, PM10, NO2, SO2, CO, and Ozone, 

highlighting regional variations in air quality. Assam, with its higher levels of urbanization and 

industrial activity, shows elevated AQI levels, especially for pollutants like PM10 and NO2. In contrast, 

Arunachal Pradesh and Nagaland, with their rural and forested landscapes, exhibit lower AQI levels, 

indicating better air quality. The study utilizes AdaBoost (Adaptive Boosting) and XGBoost (Extreme 

Gradient Boosting) models to predict future AQI trends, providing valuable insights for policymakers 

to anticipate air quality changes. Monthly and yearly comparisons of pollutant levels reveal significant 

temporal variations, with some states experiencing seasonal spikes in pollutants, particularly in winter. 

Through detailed graphs and AdaBoost/XGBoost-based predictions, the study emphasizes the impact 

of urbanization, industrialization, and geographical factors on air quality, offering crucial data for 

environmental policy and public health initiatives. 
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INTRODUCTION  

Air pollution has emerged as a critical global issue, affecting millions of people across different 

regions and posing severe risks to both environmental sustainability and public health [1]. The rapid 

pace of urbanization and industrialization, particularly in developing countries like India, has 

exacerbated this issue, making it one of the leading contributors to premature deaths and diseases 

worldwide [2, 3]. According to the World Health Organization (WHO), air pollution is responsible for 

approximately 7 million deaths annually [4]. In many Indian cities, particularly in the northern plains, 

residents are frequently exposed to hazardous air 

quality, which can trigger respiratory problems, 

cardiovascular diseases, and even reduce life 

expectancy [5]. Therefore, understanding air 

pollution levels and their long-term effects has 

become a priority for governments, environmental 

agencies, and researchers [4]. This understanding is 

crucial for devising effective policies aimed at 

mitigating the adverse effects of pollution on public 

health and the environment.  

 

The Air Quality Index (AQI) serves as a 

standardized metric to simplify the assessment of air 

quality by converting pollutant concentrations into 
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a single, easily interpretable number. This metric encompasses several key pollutants, such as 

particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide 

(CO), and ozone (O3). These pollutants, each presenting unique risks to human health, are closely 

monitored to ensure public safety. For example, PM2.5 and PM10 are known to penetrate deep into the 

respiratory system, exacerbating conditions like asthma and other lung diseases. Meanwhile, NO2 and 

SO2 contribute to respiratory irritation and cardiovascular stress, especially in vulnerable populations. 

The AQI system categorizes air quality from “Good” to “Hazardous,” thereby providing essential 

information to the public and policymakers to help mitigate risks associated with high pollution levels 

(Figure 1) [6].  

 

 

 
Figure 1. AQI Metric. 
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India, as one of the worlds’ fastest-growing economies, faces significant challenges related to air 

pollution, especially in its urban and industrial areas. The rapid urbanization and escalating energy 
demands have led to increased emissions from transportation, industries, and residential sources. Cities 

like Delhi, Kolkata, and Mumbai frequently report some of the highest pollution levels globally, with 
AQI values regularly breaching safe limits. However, the air quality varies greatly across India’s diverse 

regions due to differences in geography, industrial activity, and population density. The northern 
regions, especially those in the Indo-Gangetic Plain, suffer from severe pollution due to vehicle 

emissions, industrial activities, and seasonal agricultural practices like stubble burning. In contrast, 
northeastern states, which are less industrialized, are believed to have relatively better air quality. 

However, detailed studies on these regions remain limited [6, 7]. This study aims to fill this gap by 

analyzing and comparing AQI levels across five eastern Indian states: Arunachal Pradesh, Assam, 
Meghalaya, Nagaland, and Tripura [8]. 

 

STUDY AREA 

The study focuses on AQI across five northeastern states of India – Arunachal Pradesh, Assam, 
Meghalaya, Nagaland, and Tripura – each characterized by distinct geographical and environmental 

features. Arunachal Pradesh, with its expansive forest cover and minimal industrial presence, is 
generally considered to have cleaner air. However, the state’s increasing developmental projects, 

including infrastructure expansion, could pose future air quality challenges. Assam, being more 
urbanized and industrialized, has significant sources of pollution, such as vehicular emissions and 

industrial activities in cities like Guwahati. This leads to higher concentrations of pollutants like PM10 
and NO2 [9]. Meghalaya, known for its hilly terrain, faces localized air quality issues, especially due to 

coal mining activities, which contribute to elevated pollutant levels in certain areas [10].  
 

Nagaland and Tripura, primarily rural states with dense forest cover, generally experience lower 
pollution levels. The absence of heavy industry in these regions contributes to better air quality; 

however, seasonal agricultural practices, such as crop burning, and local vehicular emissions can affect 

the AQI temporarily [11]. Understanding the AQI trends in these varied environments is crucial for 
identifying region-specific pollution sources and implementing effective air quality management 

strategies. 
 

DATA METHODOLOGY 

Data Extraction 

Data on pollutant concentrations, including PM2.5, PM10, NO2, SO2, CO, and O3, were extracted 
from the Central Pollution Control Board (CPCB), India’s main body for air quality monitoring. The 

CPCB operates a vast network of monitoring stations that record pollutant levels across various regions 
[5]. The data for this study was gathered from stations situated within or near the target states, focusing 

on daily readings of pollutants over a defined period [11]. This comprehensive dataset provides insights 
into both short-term variations and long-term trends in air quality, making it valuable for predictive 

modeling. The data collection process aimed to ensure the inclusion of diverse climatic conditions and 
geographic factors to provide a holistic view of air quality in these states. 

 
Data Pre-Processing 

Data preprocessing is a crucial step to ensure the quality and consistency of datasets used in analysis 

and modeling. The air quality data initially contained missing entries and outliers that could distort 
model accuracy [12]. To address this, missing values were imputed using statistical techniques like 

mean substitution or interpolation, while instances where imputation was not feasible were excluded. 
Outliers, identified through Z-score analysis and visualized using boxplots, were managed to maintain 

the integrity of the data [13]. These steps were vital in preparing a clean dataset suitable for training 
predictive models. 

 

Normalization of numerical features, such as pollutant concentrations, was performed to ensure that 

variables with different scales do not disproportionately influence the model’s learning process [8]. This 
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step was especially important for pollutants like PM2.5, which can have a wide range of values 

compared to gases like CO or NO2. Additionally, categorical variables were encoded to ensure 

compatibility with machine learning models, resulting in a refined dataset ready for analysis and model 

training [14]. 

 

Feature engineering played a critical role in enhancing the dataset for improved model performance. 

This involved creating new features, such as daily pollutant averages, weekly trends, and pollutant 

ratios, to better capture temporal variations and pollutant dynamics [15]. Moreover, interactions 

between pollutants and meteorological parameters, such as the impact of temperature on PM2.5 

dispersion or the effect of humidity on NO2 concentration, were encoded as additional features. This 

approach aimed to provide the models with a richer understanding of underlying patterns in air quality 

changes. The dataset also included lagged variables to account for delayed effects of meteorological 

conditions on pollutant levels, which is particularly useful in time-series predictions [3]. By 

implementing these steps, the study ensured that the models could better identify complex relationships 

in the data, ultimately leading to more accurate AQI forecasts. 

 

Computing AQI 

To compute the AQI, the study followed CPCB guidelines, considering pollutants like PM2.5, PM10, 

NO2, SO2, CO, and O3 [3]. The AQI was calculated using the highest concentration values among any 

three pollutants, providing a comprehensive assessment of air quality for each location. The inclusion 

of meteorological parameters like Temperature, Relative Humidity (RH), Wind Speed (WS), Wind 

Direction (WD), Solar Radiation (SR), Air Pressure (BP), Ambient Temperature (AT), and Rainfall 

(RF) allowed for a nuanced understanding of how weather conditions impact air quality [16, 17]. These 

factors play a significant role in the dispersion or concentration of pollutants, with phenomena like 

temperature inversions during winter months often leading to higher pollution levels [16].  

 

Machine Learning Methods to Predict AQI 

With the rise in availability of real-time air quality data, machine learning models have become a 

valuable tool for predicting AQI trends and understanding pollution dynamics. This study employs two 

robust models, AdaBoost and XGBoost, chosen for their ability to handle complex datasets with varying 

relationships between pollutants and environmental factors [17]. While traditional statistical models 

offer insights, machine learning models like these can better capture the non-linear interactions between 

pollutants and meteorological influences [18].  

 

Adaboost Model 

AdaBoost, short for Adaptive Boosting, is an ensemble learning technique that creates a strong 

predictive model by iteratively improving the accuracy of weak learners – typically simple decision 

trees [13]. By focusing on the misclassified instances from previous iterations, AdaBoost adjusts its 

predictions, thereby enhancing overall accuracy. This model is particularly effective in cases where the 

dataset contains noise or irregular patterns, making it a suitable choice for air quality prediction. 

 

The final prediction of the AdaBoost model is a weighted sum of the predictions of weak classifiers 

ht(x). The formula is: 

 

                           
where: 

H(x): Final prediction (either –1 or 1 for binary classification). 

T: Total number of iterations (weak classifiers). 

αt: Weight of the t-th weak classifier, calculated as:  

(1) 
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ht(x): The t-th weak classifier’s prediction. 

ϵt: Error of the t-th weak classifier. 

 

XGBoost Model 

XGBoost, an advanced gradient boosting framework, is known for its efficiency and ability to handle 

large datasets with complex interactions. By using decision trees and gradient descent, XGBoost 

optimizes predictions through minimizing residual errors and incorporating regularization techniques 

to prevent overfitting [8]. Its ability to handle missing values and incorporate parallel processing makes 

XGBoost a powerful model for AQI forecasting.  

 

The model’s robustness enables it to deliver high accuracy across different states with varying 

pollution sources and meteorological conditions (Figure 2). 

 

 
Figure 2. Location map of Northeastern States of India. 

 

By training AdaBoost and XGBoost on historical AQI data, the study forecasts future air quality 

trends, offering insights into potential periods of heightened pollution. These forecasts can guide 

policymakers in issuing warnings or implementing control measures during high-risk periods, thereby 

supporting public health and environmental management [19]. 

 

The XGBoost model makes predictions by adding the outputs of all the decision trees (boosted trees). 

The formula for the final prediction is: 

 
where: 

Ŷ: Final predicted value for input x. 

T: Total number of trees. 

fk(x): The prediction of the k-th tree, optimized using gradient boosting. 

(2) 

            (3) 
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The objective function minimized during training is: 

 

 
where: 

 
 

Exploratory Data Analysis  

After EDA provides an initial understanding of the air quality data across the five states by exploring 
trends, distributions, and relationships. Graphical methods like histograms and boxplots revealed 
variations in pollutant levels across different states and time periods. For instance, Assam showed 
significantly higher levels of PM10 and NO2, indicative of its urban and industrial activities, whereas 
Arunachal Pradesh and Nagaland displayed lower concentrations, reflecting their rural settings [11]. 
Correlation analysis between pollutants and meteorological factors, visualized through heatmaps, 
highlighted how temperature, humidity, and wind conditions affect pollutant dispersion. For example, 
wind speed was found to have a negative correlation with PM2.5 levels, suggesting that stronger winds 
help disperse particulate matter [9, 10]. Additionally, seasonal trends were examined, with winter 
months showing higher pollutant levels due to temperature inversions that trap pollutants close to the 
surface [3]. These insights helped in selecting the most relevant features for training the AdaBoost and 
XGBoost models, ensuring that the models effectively capture the nuances of air quality variations in 
these regions [13, 17]. 

 
Building on the EDA findings, the analysis also identified distinct patterns in the pollutant 

distribution that vary not only by geography but also by seasonal changes. For example, Assam’s urban 
centres like Guwahati are heavily influenced by vehicular emissions and industrial activities, which 
contribute to sustained high levels of NO2 and PM10 throughout the year [11]. In contrast, states like 
Arunachal Pradesh and Nagaland, with their dense forest cover and lower population density, 
experience more stable and lower pollutant levels, except during seasonal agricultural practices such as 
crop burning [9]. The study further revealed that in Meghalaya, mining activities contributed to 
localized spikes in pollutants like PM10, emphasizing the impact of specific economic activities on air 
quality [10]. These patterns underscore the need for tailored air quality management strategies for each 
state, considering both the local economic drivers of pollution and the seasonal atmospheric conditions 
that can exacerbate air quality issues [14]. By incorporating these insights into the feature selection 
process for AdaBoost and XGBoost models, the study ensured that the models are well-equipped to 
predict AQI trends with a high degree of accuracy, ultimately aiding policymakers in designing more 
effective intervention measures [8, 17]. 
 
RESULTS 

AQI Comparisons Across the States 

The comparative analysis of AQI levels in the five eastern states is shown in Table 1. The graphs 
represent the average AQI across these states based on historical data and predictions. The graphs for 
individual pollutants (Ozone, CO, SO2, NO2, PM10, and PM2.5) offer a detailed comparison of how 
each pollutant contributes to the overall air quality in these states. 
 

Data Transformation 

Table 1 illustrates the impact of data transformation on the skewness and kurtosis of various air 

quality attributes, including CO, NO2, Ozone, PM10, PM2.5, and SO2. Before transformation, most 

attributes exhibit positive skewness, indicating a longer right tail in their distribution, and high kurtosis 

values, which suggest the presence of outliers or heavy-tailed distributions. 

(4) 

   (5) 
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Transformations are often applied to normalize such distributions, making the data more suitable for 
predictive modeling. However, in this case, the skewness and kurtosis values remain unchanged after 
transformation, indicating that the applied transformations did not significantly alter the distribution 
shapes of these variables. This suggests that the transformations were either ineffective or not aimed at 
normalizing these specific metrics but potentially focused on other aspects like scaling or range 
adjustments to improve model training stability. 

 
Additionally, the unchanged skewness and kurtosis values after transformation might imply that the 

original data distributions were already stable enough for certain modeling techniques, reducing the 
necessity for aggressive normalization. In such cases, transformations like standard scaling or min-max 
scaling may have been prioritized to ensure consistency across features rather than altering their 
distribution shapes. This approach can be particularly useful when the goal is to maintain the inherent 
variability of the data while ensuring that all features contribute evenly during model training. 

 
Table 1. Skewness and Kurtosis Values of Selected Features Before and After the Transformation. 
Attributes Before 

Transformation 
After 

Transformation 

 Skewness Kurtosis Skewness Kurtosis 

CO 1.37 6.9 1.37 6.9 

NO2 1.96 9.34 1.96 9.34 

Ozone 2.5 11.18 2.5 11.18 

PM10 1.48 5.5 1.48 5.5 

PM2.5 1.53 6.12 1.53 6.12 

SO2 1.5 6.85 1.5 6.85 

 
Particulate Matters (PM2.5 and PM10) 

The comparison of particulate matter levels (PM2.5 and PM10) across Arunachal Pradesh, Assam, 
Meghalaya, Nagaland, and Tripura reveals notable trends over both monthly and yearly scales. Tripura 
consistently exhibits the highest levels of both PM10 and PM2.5, especially during the months from 
June to December [8, 14], indicating significantly poorer air quality compared to the other states. This 
trend is mirrored in the yearly data, where Tripura shows a substantial increase in PM10 levels from 
2022 to 2023, accompanied by a rise in PM2.5 concentrations, suggesting deteriorating air quality over 
time. In contrast, Arunachal Pradesh and Meghalaya show relatively lower and more stable levels of 
particulate matter throughout the months, with both states showing a decrease in PM10 levels year-
over-year, signalling an improvement in air quality [3, 6]. Assam, though showing steady levels during 
the months, demonstrates a notable decline in both PM10 and PM2.5 over the year, indicating positive 
progress in reducing particulate pollution. Nagaland, while relatively stable, exhibits moderate levels 
of both PM10 and PM2.5, though it is slightly higher than the cleaner states like Arunachal Pradesh and 
Meghalaya. Overall, Tripura remains the region of highest concern due to its elevated and increasing 
particulate pollution levels, while Assam, Arunachal Pradesh, and Meghalaya show improvements or 
relatively stable, better air quality. The data suggests that while some regions are managing to control 
particulate matter effectively, Tripura faces a growing challenge, particularly in the latter half of the 
year pollution status (Figures 3–6). 

 
Gaseous Pollutants (CO, SO2, NO2) 

Based on the monthly and yearly visualizations for the gaseous pollutants – CO, SO2, and NO2 –
across Arunachal Pradesh, Assam, Meghalaya, Nagaland, and Tripura, the comparison reveals 
interesting trends in air quality.  

 
For CO (Carbon Monoxide), the levels in all states remain relatively low throughout the year. 

However, Tripura sees a notable spike in CO concentration during the winter months, especially 
between October and December, while Assam, Nagaland, and Arunachal Pradesh maintain relatively 
stable and lower levels. Year-over-year, Tripura continues to show slightly elevated CO levels in 2023, 
with Nagaland also showing a minor increase, while the other states remain steady [11–20]. 



 

 

Comparative Analysis of Air Quality Indices Across Five Eastern States of India                              Mathur et al. 

 

 

© Journals Pub 2025. All Rights Reserved 38  
 

 
Figure 3. Annual and monthly variation of particulate matter (PM2.5 and PM2.10). 

 

 
Figure 4. Annual and monthly variation of gaseous pollutant CO. 

 

 
Figure 5. Annual and monthly variation of gaseous pollutant SO2. 
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Figure 6. Annual and monthly variation of gaseous pollutant NO2. 

 

For SO2 (Sulphur Dioxide), Nagaland exhibits the highest concentrations, particularly peaking 

around August and September. The other states maintain significantly lower SO2 levels throughout the 

year, with little fluctuation. Assam, Arunachal Pradesh, and Meghalaya show relatively stable SO2 

levels both on a monthly and yearly basis. From 2022 to 2023, Tripura shows a consistent rise, while 

Nagaland, despite starting high, sees a slight decline in 2023. Assam and Arunachal Pradesh show stable 

SO2 concentrations, reflecting little change in air quality regarding this pollutant. 

 

As for NO2 (Nitrogen Dioxide), Nagaland experiences significant monthly spikes, especially in April 
and September, suggesting seasonal variations or specific pollution events. Assam and Arunachal 

Pradesh display relatively stable, lower levels, with no significant monthly variations, while Tripura 
shows an increase during the end of the year. Yearly trends indicate that NO2 levels in Nagaland and 

Tripura remain high, with Nagaland seeing an increase into 2023, while Arunachal Pradesh and Assam 
have maintained or slightly decreased their levels. Overall, Nagaland and Tripura stand out with 

elevated levels of all gaseous pollutants, indicating localized pollution events or industrial activities, 
while the other states, particularly Assam and Arunachal Pradesh, show better air quality with lower 

and stable concentrations of CO, SO2, and NO2.  
 

Ozone  

The comparison of Ozone (O₃) levels across Arunachal Pradesh, Assam, Meghalaya, Nagaland, and 

Tripura shows significant variations both on a monthly and yearly basis. Nagaland consistently has the 
highest ozone levels, with prominent peaks in April and November, likely due to seasonal factors or 

localized pollution. In contrast, Assam and Arunachal Pradesh display lower, more stable ozone levels 

throughout the year, while Meghalaya maintains consistently low levels, indicating better air quality.  
 

Tripura shows moderate levels but experiences a notable increase in ozone concentration during the 
colder months. On a yearly scale, Nagaland continues to report the highest ozone levels, with Tripura 

showing an upward trend into 2023. Arunachal Pradesh and Assam have seen improvements with a 
decrease in ozone levels, and Meghalaya remains stable with the lowest levels overall. Thus, while 

Nagaland and Tripura face rising ozone pollution, Assam and Arunachal Pradesh are experiencing 
improvements, with Meghalaya maintaining its low pollution status (Figure 7). 

 
Machine Learning Models to Predict AQI 

The prediction of Air Quality Index (AQI) using machine learning methods has become increasingly 
effective with the growing availability of environmental data. In this study, two prominent machine 

learning models, XGBoost and AdaBoost, were utilized to forecast AQI across several northeastern 
Indian states, including Arunachal Pradesh, Assam, Meghalaya, Nagaland, and Tripura. The 

performance of these models was evaluated using key metrics such as Mean Absolute Error (MAE), 
Mean Squared Error (MSE), Root Mean Square Error (RMSE), and the R² score, to determine their 

accuracy in predicting future air quality levels.  
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Figure 7. Annual and monthly variation of ozone. 

 

XGBoost, known for its gradient boosting framework, performed exceptionally well across most 

states, particularly in Nagaland, where it achieved an R² score of 0.985, demonstrating its ability to 

capture complex patterns in the data. AdaBoost, a boosting algorithm that combines weak learners to 

improve model performance, also provided strong results, with its highest performance observed in 

Tripura, where it achieved an R² score of 0.990.  

 

By training these models on historical AQI data, both XGBoost and AdaBoost were able to identify 

significant temporal patterns and predict future AQI trends with high accuracy. This allows 

policymakers and environmental agencies to anticipate air quality fluctuations and implement timely 

interventions to mitigate pollution, thus supporting better environmental and public health strategies.  

 

IMPLICATIONS AND PERSPECTIVES 

The implications of this study’s comparative analysis between XGBoost and AdaBoost highlight 

significant insights (Table 2) for both environmental policy and public health. In this analysis, XGBoost 

consistently outperformed AdaBoost across most states, particularly in Nagaland and Assam, where it 

demonstrated superior predictive accuracy with R² scores of 0.985 and 0.965, respectively. XGBoost’s 

strength lies in its ability to handle larger datasets with complex relationships, such as multiple 

pollutants and meteorological factors, making it highly effective for AQI prediction. Conversely, 

AdaBoost delivered competitive results in certain cases, notably in Tripura, where it achieved a slightly 

higher R² score of 0.990. However, on average, XGBoost proved to be the more robust model overall 

[12–13].  

 

Table 2. Machine learning Models with their performance factors in prediction of AQI. 

State Model MAE MSE RMSE R² Score 

ARUNACHAL PRADESH XGBoost 3.51 226.02 15.03 0.896 

AdaBoost 4.37 232.33 15.24 0.893 

ASSAM XGBoost 5.24 475.58 21.81 0.965 

AdaBoost 8.76 246.38 15.70 0.982 

MEGHALAYA XGBoost 5.00 86.73 9.31 0.583 

AdaBoost 5.42 65.01 8.06 0.687 

NAGALAND XGBoost 1.90 19.23 4.39 0.985 

AdaBoost 3.56 24.14 4.91 0.981 

TRIPURA XGBoost 5.77 255.84 15.99 0.979 

AdaBoost 4.78 129.52 11.38 0.990 

Note: MAE – Mean Absolute error; MSE- Mean squared error: RMSE- Root Mean square Error R2 - Correlation Coefficient. 

 

The predictive power of these models allows policymakers to anticipate AQI trends and implement 

timely interventions, such as issuing public health advisories or adjusting industrial operations during 

periods of poor air quality. The ability of both models to capture regional variations in air quality, 
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particularly in urbanized regions like Assam or rural areas like Arunachal Pradesh, provides tailored 

insights for targeted policy actions. The comparative analysis emphasizes the importance of selecting 

the most suitable machine learning model for the task, with XGBoost standing out as the top performer. 

These insights empower decision-makers to address air quality challenges more effectively, 

contributing to improved public health and more sustainable urban planning strategies (Figure 8). 

 

 
Figure 8. R2 Score Model Heat Map. 

 

CONCLUSIONS 

Based on the yearly analysis and the performance of XGBoost and AdaBoost models across various 

states, it is evident that both models offer substantial accuracy in forecasting AQI levels over time. The 

yearly AQI trends, especially between 2017 and 2022, revealed rising AQI levels due to urbanization 

and industrialization in states like Assam and Tripura, while rural and less industrialized states like 

Arunachal Pradesh and Nagaland exhibited better air quality. The impact of external factors, such as 

the 2020 nationwide lockdown due to the COVID-19 pandemic, was also evident, with AQI levels 

dipping temporarily during that period before resuming their upward trajectory. 

 

XGBoost consistently outperformed AdaBoost in most regions, particularly in Nagaland, where it 

achieved an R² score of 0.985, and Assam, with an R² score of 0.965, demonstrating its ability to handle 

complex datasets over multiple years. However, AdaBoost provided competitive results, particularly in 

Tripura, where it slightly outperformed XGBoost with an R² score of 0.990. 

 

In conclusion, the combination of yearly and model-based analysis illustrates the growing need for 

robust machine learning frameworks like XGBoost and AdaBoost to predict AQI trends accurately. 

These insights allow policymakers to anticipate pollution spikes and take preventive measures. To 

further improve these models, validation across a broader range of regions and years is essential, 

ensuring their scalability and adaptability to various air quality conditions. 
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