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Abstract 

Transparent cellulose is a research hotspot in current science. Transparent nanocellulose finds appli-

cations in energy, environment, defense, catalysis, and medicine. Sodium silicate-modified cellulose 

fibers were reported to be transparent. There have been various other strategies, like generating sulfate 

groups on nanocellulose surfaces for inducing transparency in cellulose-based materials. However, the 

synthesis of transparent nanospheres of cellulose with encapsulated sodium silicate has never been 

reported in the literature. Here in, for the first time, it is surmised that the cellulose nanospheres en-

capsulating sodium silicate will outperform any other known morphologies of nanocellulose, for in-

stance nanofibers, leading to efffective light management, especially in the perovskite-based solar cells. 

Sonochemistry-based approaches to synthesize cellulose nanospheres with average diameters around 

50 nanometers have been demonstrated earlier. These nanospheres of cellulose encapsulated with 

aqueous or non-aqueous substances were used as effective nanocarriers for biomedical applications. 

In particular, sodium silicate-encapsulated nanospheres of cellulose (SSNSC) were assumed to be a 

new strategic material that could act as a promising support for nanoyeast buds for accelerating the 

carbohydrate fermentation process via effective management of the sun’s light and heat. It is hypothe-

sized that SSNSC, with their unique spherical morphology, will aid in the solar energy-based fermen-

tation process by acting as an effective light management layer due to enhanced reflections within. 
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INTRODUCTION 

A web of science search with the keywords, namely, transparent and cellulose, yields 3586 results.  

The results shrink down by an order of magnitude to 818 (as on 24th September 2024) by changing 

cellulose to nanocellulose, implying that the field of nanocellulose is in its infancy.  The growth of the 

field of transparent cellulose during the past decade (2013–2024) is shown in Figure 1. Though the 

applications of the transparent cellulose are enormous, in energy and environment and materials science 

and space exploration, especially for effective solar light harvesting and management, the material is 

not yet explored to its fullest, as evident from the slow but steady growth of the field (Figure 1) [1–50]. 

Apart from various other methods, the use of sodium silicate for inducing transparency in cellulose 

nanomaterials has been particularly appealing [51, 52].  

 

In general, cellulose is believed to be a plant material; 

nevertheless, it is also produced by certain microorgan-

isms. Cellulose is the most abundant organic, natural 

polymer on the planet. The polysaccharide in question 

is a non-toxic, renewable, biocompatible, and biode-

gradable substance. It is composed of rigid, long linear 

chains that are attached to D-glucose in a manner that 

repeats itself from one to four times. Cellulose is insol-

uble in water and in most organic solvents due to the 

strong hydrogen bonds that exist between the chains of 
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cellulose. This lack of solubility is one of the most significant challenges that the field of cellulose 

science must overcome. In recent decades, there has been a resurgence in the interest in novel cellulosic 

materials and composites that are formed from a wide range of cellulosic components. This interest has 

been fuelled by the pursuit of sustainability and green chemistry. When it comes to the manufacturing 

of nanoparticles that are suited for nanomedical applications, particularly in targeted drug delivery sys-

tems or contrasting agents in imaging techniques, cellulose is the material of choice. Recently, there 

has been an increase in the use of cellulose in medical devices. Mild acid hydrolysis of cellulose is 

effective in preparing cellulose nanospheres from discarded textile materials.  

 

 
Figure 1. Advances in the research and development of transparent cellulose during the past decade 

(2014–2023). 

 

METHODOLOGY OF SYNTHESIZING SODIUM SILICATE ENCAPSULATED 

CELLULOSE NANOSPHERES 

Gedaneken et al. reported for the first time the sonochemical synthesis of nanospheres of cellulose 

under aqueous and non-aqueous conditions for encapsulating organic molecules and demonstrated their 

utility for the selective conversion of cellulose to glucose. The spherical nanocellulose containers (SCC) 

prepared from the microcrystalline cellulose shown in Figure 2 were of size ~50 nm and served as an 

ideal precursor for the selective production of glucose (30 wt.% yield; 70 wt.% conversion of biocata-

lytic SCC [53]. A good agreement between the particle size measurements from DLS and SEM analysis 

was observed. A typical sonochemical process for the synthesis of SCC comprises two steps. In the first 

step, 1 wt.% MCC in water is sonicated for 90 minutes to obtain an aqueous suspension of the nanocel-

lulose. In the second step, 30 mL of the 1 wt.% suspension of nanocellulose is added to organic solvent 

(20 mL of dodecane shown as a representative example). The contents were sonicated for 3 minutes by 

placing the sonication tip at the interface of the aqueous and organic layers, resulting in the formation 

of the nanospherical cellulose containers. The procedure is applicable for encapsulating water-soluble 

as well as materials soluble in organic solvents in the nanospheres of cellulose. It is surmised that son-

ication of aqueous nanospherical cellulose suspensions (of concentration < 1 wt.%) in the presence of 

sodium silicate will successfully entrap a significant amount of sodium silicate to yield transparent 

nanosperical cellulose containers of sodium silicate with remarkable application in light harvesting. 

 

Such small nanospheres of cellulose, owing to their high specific surface area, lead to enhanced in-

teraction of the substrate surface with the catalyst active site of the solid acid catalyst (for instance, 

heteropoly acids), and so yield high catalytic activity and product selectivity. Conversion of cellulose 

to bioethanol is a much-wanted industrial catalytic process for sustainability in the realms of energy 

[54–65]. 
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The shell and the core of the dodecane containing spherical nanocellulose containers (SCC-D) prepared 

in the presence of either Nile Red or Rhodamine 6G were clearly examined using the fluorescence 

images shown in Figure 3 using various filters.  

 

 
Figure 2. (a) High resolution scanning electron microscope (HRSEM) image of microcrystalline cellu-

lose (MCC); (b) HRSEM image of spherical nanocellulose containers (SCC); (c) combined image of 

white light mode and fluorescence images of spherical nano cellulose container with dodecane (SCC-

D) synthesized in the presence of nile red (red signal); (d) Dynamic light scattering (DLS) graph de-

picting the size distribution of the sonicated SCC-D. 

 

 
Figure 3. Fluorescence images of Spherical Nanocellulose Container with Dodecane SCC-D that were 
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synthesized in the presence of nile red and then colored with the blue fluorophore, calcofluor white 

(a−c). (a) Fluorescence image using texas red filter (red signal); (b) fluorescence image using dapi filter 

(blue signal); (c) combined image of images a and b; (d) combined white light mode image and fluores-

cence image using Rhod filter of SCC-D that were synthesized in the presence of Rhodamine 6G. 

 

APPLICATIONS OF SODIUM SILICATE ENCAPSULATED SPHERICAL 

NANOCELLULOSE (SSNSC) 

SSNSC’s can be used as a catalytic bed for the adsorption of yeast in a non-competitive manner for 

an efficient fermentation process. Besides baker’s yeast, efficient expression systems, such as the Pichia 

pastoris yeast can be adsorbed to produce biopharmaceuticals, a potential revenue generator for com-

panies, and to help the nation grow. Various kinds of microorganisms can also be supported on the 

SSNC catalytic system and push them to work and produce compounds of interest. SSNSC’s coated 

with hydrophobic compounds can be used in solar cells, such as perovskites. Encapsulation of sodium 

silicate within cellulose nanospheres makes it transparent. The spherical morphology may contribute to 

more efficient light management and as a concentrator. Nanospheres would increase the total available 

surface area for the adsorption of orphaned yeast particles in a non-competitive manner, which would 

ultimately result in an efficient fermentation process. Dried Cellulose nanospheres obtained via sono-

chemical methods and encapsulated with sodium silicate are hypothesized to be stable due to the ther-

mal stability of cellulose as well as sodium silicate. Agglomeration of nanospheres in the dried state is 

a possibility, but it can be overcome at the point of usage by the application of mechanical methods to 

separate them. 

 

As it is possible to make cellulose nanospheres (50 nm) using the sonication process, advancing 

further, it is possible to fill it with sodium silicate and nano TiO2 powder (average size 2 to 5 nm). A 

large transparent cylinder can be filled with this powder and bacteria- or virus-laden water. When passed 

through such a column, the solar light will pass through the spheres due to sodium silicate, and it will 

be interrupted at some points by TiO2 nanoparticles. At those points, H2O2 will be produced in situ, and 

it can kill the microorganisms. This arrangement can be used repeatedly for a long time. If H2O2 is no 

longer required, it will breakdown and decompose. It is further assumed that in the realm of energy too, 

especially in the accelerated production of glucose from nanospheres of cellulose, the presence of so-

dium silicate will play a constructive role. Such ion effects, for instance, the Hofmeister ion series, are 

well known in protein chemistry.  

 

CONCLUSIONS 

Sonochemical irradiation is a proven technique for the synthesis of nanomaterials, including those in 

the biological world, namely, nanoyeast and nanocellulose. Strategies for the synthesis of spherical 

nanocellulose containers for encapsulating exotic molecules like sodium silicate for light harvesting 

applications in the realms of energy and environment are demonstrated with specific case studies. Such 

exotic nanocellulose-based composites can be used as support for nanoyeast for solar energy-driven 

fermentation processes, apart from being used in solar cells.  
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