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Abstract: 

 

Condensate gas reservoirs pose considerable management challenges due to their 

intricate phase behavior and the critical need for accurate predictions of dew point pressure 

(PDew). A precise determination of PDew is vital for optimizing production strategies, 

estimating reserves, and planning enhanced oil recovery operations. Traditional methods for 

PDew determination often involve experimental analyses that can be both costly and time-

consuming, highlighting the necessity for alternative predictive models. This review 

consolidates recent advancements in methodologies for predicting PDew, encompassing 

empirical correlations, equation-of-state models, and cutting-edge artificial intelligence 

techniques such as neural networks and machine learning algorithms. Key studies discussed 

demonstrate that AI can significantly enhance the accuracy of PDew predictions through the 

application of genetic programming (GP), artificial neural networks (ANNs), and XGBoost 

across a variety of reservoir conditions. These advanced computational methods hold 

promising potential for improving reservoir characterization and management practices in gas 

condensate fields. 

mailto:zainulabdeen.eng@gmail.com


2 
 

 

 

Keywords: Dew Point Pressure (PDew), Gas Condensate Reservoirs, Phase Behavior 

Artificial Intelligence (AI) Models, Reservoir Characterization, Enhanced Oil Recovery 

(EOR) 

 

Introduction  

 

Gas condensate is a type of gas reservoir, typically under pressures below 2,000 psia 

and temperatures under 100°F, though it can occur at higher pressures and temperatures. 

Advances in deep drilling techniques have led to the discovery of reservoirs with elevated 

temperatures and pressures (Sadeq, 2018)[32] Ali, J., et al. (1997) [3]. These reservoirs hold 

significant gas reserves and considerable quantities of low-density, high-API quality 

condensate. As production occurs and the pressure in the reservoir declines, heavier 

components of the gas stream begin to condense into droplets; these droplets gather at the 

bottom of the wellbore where the pressure drop is most significant, resulting in a relatively 

low bottom hole flowing pressure (BHFP) (Ganie 2019)[17]. 

Both references point to the physical state of gas under specific temperatures and 

pressures, defined by Al-Dhamen and Al-Marhoun (2011)[1], stating that the critical 

temperatures in gas condensate reservoirs are lower than the reservoir temperature, while 

cricondentherms are always higher than the temperatures present within the reservoir 

conditions. During the initial stages of production, if the reservoir pressure exceeds the dew 

point pressure (PDew) and functions as a single-phase system, it facilitates the efficient 

separation of valuable condensates at the surface. When the reservoir pressure decreases 

during a depletion test, it enters a two-phase region where heavier components start to 

separate from the gas phase, subsequently causing the condensate to become trapped as a 

residuum, which includes valuable intermediate components (Haji-Savameri et al., 2020)[22]. 

As the process of depressurization continues, liquid condensate gathers in the 

reservoir, leading to the formation of free liquid. However, there is typically insufficient 

permeability to enable effective liquid production (Al-Dhamen and Al-Marhoun, 2011)[1]. 

Gas condensate reservoirs usually present a gas-to-liquid ratio between 3.2 and 150 
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MCF/STB (Al-Dhamen and Al-Marhoun, 2011; Haji-Savameri et al., 2020)[1,2, 22]. In such 

reservoirs, productivity commonly diminishes when the pressure close to the wellbore drops 

below the dew point pressure (PDew). The accumulation of condensate causes a partial 

blockage, which impedes the movement of gas around the well, ultimately leading to a 

decrease in effective gas permeability (Elsharkawy, 2002; Haji-Savameri et al., 2020). 

The specific characteristics of reservoir fluids, especially Pressure Volume-

Temperature (PVT) data, are crucial for reservoir engineering calculations, such as estimating 

reserves and devising future Enhanced Oil Recovery (EOR) strategies (Gonzalez et al., 

2003)[21]. In gas condensate reservoirs, there are two dew point pressures (PDew). The 

lower dew point pressure generally falls below atmospheric pressure and is typically not a 

major concern, as it remains significantly lower than the reservoir pressure. In contrast, 

identifying the upper dew point pressure—referred to as the retrograde dew point—is 

essential for effective reservoir management. This research highlights the upper PDew, which 

is attained when pressure decreases. Gas condensate reservoirs have a lower presence of 

heavier hydrocarbons compared to oil reservoirs, leading to a shift of the critical point further 

down and to the left within the PT envelope, resulting in a denser PT diagram (Al-Dhamen 

and Al-Marhoun, 2011; Haji-Savameri et al., 2020)[1,22].  

Therefore, the gas extracted from the reservoir has fewer valuable components, as 

these components are segregated within the reservoir and close to the wellbore. Therefore, 

the precise and timely prediction of the dew point pressure (PDew) is vital for fluid 

characterization, assessing reservoir performance, planning for the development of gas 

condensate reservoirs, and designing and optimizing production systems. Although 

determining PDew through experimental methods yields the most accurate and trustworthy 

results, it can also be an expensive and time-consuming endeavor, often accompanied by the 

risk of errors (Elsharkawy, 2002).[13] 

2- Hydrocarbon reservoir  

Various definitions have been suggested to categorize reservoirs to comprehend their 

characteristics and thermodynamic responses during the initial phases of field development 

{1}. A traditional definition that focuses on fluid phase behavior is as follows:  
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1- Heavy Oil  

2- Black Oil  

3- Volatile Oil  

4- Gas Condensate 

5-  Dry Gas  

6- Asphalts-Bitumen  

7- Oil Sands  

The conditions of the reservoir, including temperature, pressure, and fluid composition, play 

a vital role in determining the category of the fluid. The phase envelope can differ in 

classification depending on the pressure at a given reservoir temperature, as demonstrated in 

Fig. 1. 

 

 

Fig (1) P-T diagram of different hydrocarbon reservoir (Echenique, 2016 ) [10] 
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Flow region  

The flow characteristics of gas condensate reservoirs have been discussed by various 

researchers during the depletion stage when the bottom hole pressure (BHP) falls below the 

dew point pressure. Furthermore, the classification of different flow regions has been 

reported. Three specific regions can be illustrated and explained in Fig. 2. Economides, M., et 

al. (1987) [11] 

First Region: Adjacent to the wellbore is a two-phase gas-condensate reservoir that contains 

both flowing condensate and gas. The pressure (Pr) is underneath the dew point pressure 

(Pdew), and the saturation conditions indicate that the condensation saturation is less than the 

critical saturation levels. Consequently, Pr decreases as it approaches the well and falls below 

Pdew, resulting in the establishment of a condensate bank. 

Second Region: The middle region, which serves as the second one, exists between the first 

and third regions as a two-phase gas-condensate reservoir with mobile gas and stationary 

condensate (Pr<Pdew & Soc>So) since the condensation saturation is lower than the critical 

condensate saturation [14]. Thus, Pr decreases toward the well and eventually becomes less 

than Pdew, causing the condensate bank to begin forming. Fevang, O. (1995) [15] 

 Region 3 is the stone of the reservoirs, a single-phase gas reservoir (Pr>Pdew). A fourth 

region may exist in the immediate well vicinity and has the same conditions as the region one 

but with high gas relative permeability.  
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Fig (2) Flow region 

development (Fevang, 1996) [16] 

Fig (2) development of fourth region (Ganie, 2019)[17, 18] 

 

 

 

 

Fig.3 implements the 

existence of the fourth 

region. 

 

 

3- Dew point pressure measurements in gas condensate reservoirs  
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Dew point pressure measurements in gas condensate reservoirs by experimental methods  

FIGURE 3 

 

 

 

 

 

                                                    Fig (4) CCE experiments (16) 

 

Traditionally, three laboratory experiments of (PVT) on reservoir fluids exist. These 

experiments are the constant composition expansion (CCE), differential liberation experiment 

(DLE), and constant volume depletion (CVD). To characterize and understand the reservoir 

fluids behavior, these experiments are set. PVT in gas condensate reservoirs is different from 

oil, only CVD and CCE are required. the heavy fraction of fluid is anatomized to characterize 

mayor components by extended carbon groups (Danesh, 1998).[9] 

 Constant Composition Expansion (CCE):  

This laboratory experiment is used to compute the dewpoint pressure (Pdew), Z factors of 

single-phase gas, and the condensation dropout curve at P < Pdew which is oil relative 

volume. Fig. 4 illustrates the procedure of this experiment  
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Constant Volume Depletion (CVD): This experiment is a substantial test for gas condensate 

fluids. Reservoir pressure vs. produced–well stream composition and surface products, liquid 

dropout, and re-vaporization that occurs during pressure depletion, among others, all these 

data can be provided by this experiment and used directly by an engineer. Fig. 5 presents the 

process of CVD   

 

 

 

 

3-2 Dew point pressure measurements in gas condensate reservoirs by empirical 

correlations  

 

Several methods for the prediction of the gas condensate pressure dew point (PDew) 

have been proposed, such as correlations based on Artificial Intelligence (AI), equations of 

state (EoS), graphical approaches, and experimental techniques, as depicted above. Eilerts 

and Smith (1942) [12] correlated PDew with temperature (T), composition, molal average 

boiling 

point, 

and 

oil-to-

gas  

Fig (5) 

CVD experiments (16)  
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volume ratio. Olds et al. (1945) studied fluid samples from the Paloma field and 

reported that composition affects PDew and that the removal of intermediate fractions 

increases PDew.  In another study on samples from San Joaquin Valley fields, the same 

authors developed a plot of PDew as a function of Gas Oil Ratio (GOR), T, and oil API 

gravity (Olds et al., 1949).[28] Reamer and Sage (1950a) [31]tried to extend existing 

correlations to higher values of GOR with samples taken from a field in Louisiana. 

 

             Organick and Golding (1952) [29] proposed a correlation based on the direct 

dependence of saturation pressure on composition, where the indicators of composition are 

the molal average boiling point and a modified weight average equivalent molecular weight. 

Later, Nemeth (1966)  [26] and Nemeth and Kennedy (1967) [27] developed a correlation to 

estimate PDew as a function of composition, temperature (T), and description of C7+. Crogh 

(1990)[8]  improved the relation developed by Nemeth (1966) [26]by relating the 

composition of a retrograde gas-condensate mixture to its composition at the dew point 

pressure (PDew). Further, Potsch and Braeuer (1996) [30] proposed a graphical method for 

determining the PDew, which exhibited a relative accuracy of less than 3% or a maximum 

deviation of 5 bars. Carlson and Cawston (1996) [6] found that the H2S concentration affects 

the dew point pressure (PDew), Coats, K. H. (1980) [7] that is, as the H2S concentration 

increases, the amount of liquid dropout decreases. Yisheng (Fang et al., 1998) [14] proposed 

a relation based on gas condensate sample data taken in western China that is a function of 

the composition, temperature, and average molecular weight of the mixture fluid with an 

average error of less than 5.8%. 

 Humoud and Al-Marhoun (2001) [23] proposed a correlation to predict PDew based 

on T, pseudo-reduced P and T, primary separator GOR, primary separator P and T, and 

relative densities of separator gas and C7+ fraction using field and laboratory PVT analyses 

data of samples representing gas reservoirs in the Middle East.  

Elsharkawy (2001, 2002)[13] proposed an empirical correlation to predict PDew for 

gas condensate samples using routinely measured gas composition and T, proving its 

superiority over EoS-based models. Marruffo et al. (2002)  [25] developed a new correlation 

to predict PDew using 54 data samples and reported an error of 5.74%. They utilized C7+ 
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content, Gas Condensate Ratio (GCR), API gravity, and T as input parameters. When 

comparing their proposed correlation with the one by Nemeth (1966) [26] , they 

demonstrated its superiority. 

3-1 Dew point pressure measurements in gas condensate reservoirs via AI 

applications  

In 2003, Gonzalez et al. utilized a Neural Network (NN) model to predict the PDew 

of retrograde gas reservoirs, using 802 experimental Constant Volume Depletion (CVD) data 

and reported an average absolute error of 8.74%. In 2007, Jalali et al.[24] used 111 data 

samples to develop different Artificial Neural Networks (ANNs) for predicting PDew and 

concluded that the Levenberg-Marquardt training algorithm provided the best results. 

In 2011, Al-Dhamen [1]and Al-Marhoun developed various models including 

nonlinear multiple regression, non-parametric regression model (Alternating Conditional 

Expectations (ACE) technique), and ANN using a total of 113 data samples obtained from 

Constant Mass Expansion (CME) tests collected from Middle East fields. The ANN model 

yielded the best results. 

In 2012, Godwin  [19] proposed a new correlation to predict the gas condensate's 

PDew using 259 data samples and claimed the developed correlation's superiority compared 

with existing correlations. In 2017, Alzahabi et al. (2017) [5] proposed a correlation based on 

down-hole fluid analysis data. They used multiple linear regression and utilized 667 data 

samples to develop their model.  

Shokir, Eissa M. El-M (2008) [33] presents a genetic programming (GP) and 

Orthogonal Least Squares (OLS) algorithm designed to predict dew point pressure (DPP) in 

gas condensate reservoirs. The model estimates DPP based on reservoir fluid composition—

including the molar fractions of methane to heptane-plus, nitrogen, carbon dioxide, hydrogen 

sulfide, and the molecular weight of the heptane-plus fraction—alongside reservoir 

temperature. Utilizing data from 245 experimental gas condensate systems, the model was 

validated against existing correlations. The results show that the GP-OLS model achieved 

superior accuracy, with an average absolute relative error (AAER) of just 4.2%. This research 
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underscores the importance of precise DPP prediction for effective reservoir management and 

illustrates the robustness of the GP-OLS method when experimental data is lacking. 

AL-Jawad, M. S. and O. F. Hasan, et al. (2012) [4] examine methods for estimating 

dew point pressure in Saudi Arabian gas condensate fields using artificial intelligence (AI) 

techniques. The study highlights the critical role of dew point pressure in reservoir evaluation 

and the difficulties of direct measurement from fluid samples. Comparing traditional 

methods—such as those by Nemeth and Kennedy[27] , and Elsharkawy [13] —with AI 

models like Multilayer Perceptron (MLP), General Regression Neural Networks (GRNN), 

Radial Basis Function (RBF) networks, Support Vector Machines (SVM), and Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS), the researchers assess these models using data 

from 98 PVT reports, focusing on Mean Absolute Percentage Error (MAPE) and Coefficient 

of Correlation (R). The findings indicate that GRNN is particularly effective, showcasing the 

potential of AI models to improve accuracy and computational efficiency in predicting dew 

point pressure, thereby enhancing reservoir management in complex gas condensate fields. 

Alzahabi et al. (2017) [5] presented a novel model to predict the dew point pressure of 

gas condensate reservoirs using down-hole fluid analyzer data without performing detailed 

laboratory analysis or surface fluid data. The dataset used in this work consists of 667 

samples of gas condensate. The model incorporates parameters such as temperature, CO2, 

CH4, and other hydrocarbon mole fractions. Applying such modern techniques of statistical 

analysis as multiple linear regression and model selection criteria in the form of AIC and 

BIC, the study accomplished a mean absolute relative error of 2% in the prediction of 

logarithmic values of pressure. The validation via K-fold cross-validation showed strong 

predictive abilities, compared with other advanced methodologies like random forests. The 

model has practical implications because it can be used in real-time, assessing dew-point 

pressure during down-hole fluid sampling to manage the reservoir and well design in gas 

condensate fields. Herein, this approach epitomizes one of the major recent advances in 

reservoir engineering by providing reliable estimates critical in optimizing production 

strategies without conventional laboratory-related constraints.  

 

A new predictive model for dew point pressure (Pd) in gas condensate reservoirs by using 
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Gene Expression Programming (GEP) coupled with non-linear regression analysis. This 

approach will clearly explain the complex interactions between key parameters such as 

reservoir temperature, hydrocarbon composition, heptane-plus fractions, and nonhydrocarbon 

components like CO2 and N2. The model was trained on a data set of 453 published data 

points and then was validated by analyzing 27 additional gas condensate samples, which 

cover wide ranges in PVT properties studied under constant composition expansion (CCE) 

experiments. A statistical comparison with current empirical correlations proves the better 

performance of the GEP-based model, which features low average relative errors and high 

coefficients of determination (R²). The proposed model gives a robust alternative for Pd 

prediction, especially where full PVT data is unavailable. In this respect, it would be an 

excellent tool among the basic reservoir engineering and management tools for optimizing 

production techniques and fluid characterization. The study has improved upon the accuracy 

of dewpoint pressure prediction with an added advantage over traditional empirical models 

by overcoming their weaknesses and including advanced computational techniques.  

An  extensive research on dew point pressure prediction for gas condensates using an 

advanced machine learning technique called XGBoost, which can overcome the challenges 

related to the accurate prediction of DPP. 

They analyzed a dataset of 342 samples, where they carefully checked and transformed the 

variables into composition data, the reservoir temperature, and the specific gravity of 

heptane-plus. They also built a robust predictive model by using XGBoost with engineering 

features—artificial proxy features and pseudocritical properties derived from Sutton's 

correlations. Compared to the classical empirical models developed by Nemeth and Kennedy 

(1967) [27] , Elsharkawy (2001)[13] , Ahmadi and Elsharkawy (2016), [10] and Gomaa, S. et 

al. (2018) [20], the XGBoost model showed the best performance in predicting the fracture 

gradient with a mean relative error of 470 psi and a mean absolute relative error of 7.16%. 

The present study brings out the effectiveness of XGBoost when used on small datasets and 

its potential to outperform traditional empirical models for DPP forecasting under various gas 

composition and reservoir condition combinations.  

A  new modeling approaches for the prediction of dew point pressure of gas 

condensate (PDew), thus meeting the requirements for accurate predictions in reservoir 

engineering and, at the same time, decreasing time and costs linked with laboratory 
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measurements. This work, by using a dataset of 721 samples collected over several decades, 

performed extensive preprocessing steps, including duplicate removal, outlier removal, and 

transformation to reach the normal distribution. Further, the dataset was grouped according to 

the hydrogen sulfide concentration (XH2S) before splitting the dataset into training and 

testing sets. Three different neural network structures, including MLP-NN, RBF-NN, and 

LSSVM, were optimized and then combined through the CMIS technique. Of these, the 

harmonic CMIS model performed better with an AARD value of 3.456% and an R² 

coefficient of 0.9702. The present study shed light on the benefits of combining different 

models in the estimation of PDew, which has important implications in both theoretical study 

and applied practices in reservoir engineering and optimization of production.  

Conclusion:  

In short, the review establishes the importance of reliable PDew prediction for 

effective gas condensate reservoir management. Although the traditional empirical 

correlations and EoS-based methods have provided foundational insights, their limitations in 

dealing with complex reservoir conditions drive advancements in AI-driven predictive 

modeling. Many studies using GP, ANNs, and XGBoost have shown a substantial 

improvement in the accuracy of PDew prediction over conventional methods, hence 

providing strong solutions for reservoir engineers. The development of artificial intelligence-

driven methodologies not only enhances the forecasting capabilities but also allows for real-

time decision-making, hence optimizing production efficiency and resource utilization. 

Future research efforts should focus on reducing uncertainty in the data sets by drawing more 

data points, improving algorithmic models, and integrating interdomain strategies to enhance 

the reliability and applicability of the PDew prediction models within the realm of gas 

condensate reservoir engineering. 
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