Journal Menu
By: Aqsa Ashfaq
Department of Chemistry, Government College
University, Faisalabad, Pakistan
Electroanalytical techniques are thought to be the most significant area of analytical chemistry, which identify the properties as well as quantify the given analyte(s) within an electrochemical cell. The high sensitivity, high analysis speed, low sample and solvent consumption, high scan rate, low operating cost of electro analysis make it highly advantageous in all situations. A summary of electroanalytical techniques is provided, with an emphasis on their most common uses in the identification of distinct analytes. These techniques include cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and voltammetry in square waves (SWV). This review explains the electrochemical applications of electroanalytical techniques in different fields. CV is widely used for studying the electrochemical properties of molecules, particularly in redox reactions. It provides detailed information about the oxidation and reduction processes of the analytes. SWV offers enhanced sensitivity and is particularly useful in trace analysis of complex matrices. DPV is employed for its high sensitivity and resolution in detecting low concentrations of analytes. EIS is used for characterizing the electrical properties of materials and interfaces, often in the study of corrosion, batteries, and sensor development. The versatility and efficiency of these techniques make them indispensable in environmental monitoring, pharmaceutical analysis, and material science, among other fields.
![]()
Citation:
Refrences:
-
Li, J., Peng, Z., & Wang, E. (2018). Tackling grand challenges of the 21st century with electroanalytical chemistry. Journal of the American Chemical Society, 140(34), 10629–10638.
-
Ahmadi, M., Ghoorchian, A., Dashtian, K., Kamalabadi, M., Madrakian, T., & Afkhami, A. (2021). Application of magnetic nanomaterials in electroanalytical methods: A review. Talanta, 225, 121974.
-
Scholz, F. (2010). Electroanalytical methods (1st ed.). Berlin: Springer.
-
Minteer, S. D. (2018). Advances in electroanalytical chemistry. Journal of the American Chemical Society, 140(8), 2701–2703.
-
Baig, N., Sajid, M., & Saleh, T. A. (2019). Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends in Analytical Chemistry, 111, 47–61.
-
Cetinkaya, A., Kaya, S. I., & Ozkan, S. A. (2024). A collection of the best practice examples of electroanalytical applications in education: From polarography to sensors. Journal of Solid State Electrochemistry, 28(3), 869–895.
-
Olson, M. P., & LaCourse, W. R. (2019). Voltammetry. In Ewing’s Analytical Instrumentation Handbook (pp. 509–522). CRC Press.
-
Sandford, C., Edwards, M. A., Klunder, K. J., Hickey, D. P., Li, M., Barman, K., et al. (2019). A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 10(26), 6404–6422.
-
Meddings, N., Heinrich, M., Overney, F., Lee, J. S., Ruiz, V., Napolitano, E., et al. (2020). Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review. Journal of Power Sources, 480, 228742.
-
Taleb, A., Yanpeng, X., & Dubot, P. (2017). Self-organized gold nanoparticles modified HOPG electrodes: Electrochemical stability and its use for electrochemical nanosensing applications. Applied Surface Science, 420, 110–117.
-
Uslu, B., & Ozkan, S. A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644–2702.
-
Carpani, I., Conti, P., Lanteri, S., Legnani, P. P., Leoni, E., & Tonelli, D. (2008). Direct quantification of test bacteria in synthetic water-polluted samples by square wave voltammetry and chemometric methods. Biosensors and Bioelectronics, 23(7), 959–964.
-
Choudhary, Y. S., Jothi, L., & Nageswaran, G. (2017). Electrochemical characterization. In Spectroscopic Methods for Nanomaterials Characterization (pp. 19–54). Elsevier.
-
Farahi, A., Lahrich, S., Achak, M., El Gaini, L., Bakasse, M., & El Mhammedi, M. A. (2014). Parameters affecting the determination of paraquat at silver rotating electrodes using differential pulse voltammetry. Analytical Chemistry Research, 1, 16–21.
-
Siddiqui, M. R., AlOthman, Z. A., & Rahman, N. (2017). Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry, 10(Suppl 2), S1409–S1421.
-
Mirčeski, V., Stojanov, L., & Skrzypek, S. (2018). Recent advances and prospects of square-wave voltammetry. Contributions, Section of Natural, Mathematical and Biotechnical Sciences, 39(2).
-
Aydemir, N., McArdle, H., Patel, S., Whitford, W., Evans, C. W., Travas-Sejdic, J., & Williams, D. E. (2015). A label-free sensitive real-time semiquantitative electrochemical measurement method for DNA polymerase amplification (ePCR). Analytical Chemistry, 87(10), 5189–5197.
-
Arshad, N., & Farooqi, S. I. (2018). Cyclic voltammetric DNA binding investigations on some anticancer potential metal complexes: A review. Applied Biochemistry and Biotechnology, 186(4), 1090–1110.
-
Barbosa, P. F. P., Vieira, E. G., Cumba, L. R. P., Paim, L. L., Nakamura, A. P. R., Andrade, R. D. A., & do Carmo, D. R. (2019). Voltammetric techniques for pesticides and herbicides detection – An overview. International Journal of Electrochemical Science, 14(4), 3418–3433.
-
Al-Rashdi, A. A., Farghaly, O. A., & Naggar, A. H. (2018). Voltammetric determination of pharmaceutical compounds at bare and modified solid electrodes: A review. Journal of Chemical and Pharmaceutical Research, 10, 21–43.
-
Gupta, A. K., Dubey, R. S., & Malik, J. K. (2013). Application of modern electroanalytical techniques: Recent trend in pharmaceutical and drug analysis. International Journal of Pharmaceutical Sciences and Research, 4(7), 2450–2457.
-
Jin, H., Gui, R., Yu, J., Lv, W., & Wang, Z. (2017). Fabrication strategies, sensing modes, and analytical applications of ratiometric electrochemical biosensors. Biosensors and Bioelectronics, 91, 523–537.
-
Mirceski, V., & Gulaboski, R. (2014). Recent achievements in square-wave voltammetry: A review. Macedonian Journal of Chemistry and Chemical Engineering, 33(1), 1–12.
-
Švorc, Ľ., Sochr, J., Tomčík, P., Rievaj, M., & Bustin, D. (2012). Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochimica Acta, 68, 227–234.
-
Brett, C. M. (2022). Electrochemical impedance spectroscopy in the characterisation and application of modified electrodes for electrochemical sensors and biosensors. Molecules, 27(5), 1497.
-
Srivastava, A. K., Upadhyay, S. S., Rawool, C. R., Punde, N. S., & Rajpurohit, A. S. (2019). Voltammetric techniques for the analysis of drugs using nanomaterials-based chemically modified electrodes. Current Analytical Chemistry, 15(3), 249–276.
-
Janeva, M., Kokoskarova, P., Maksimova, V., & Gulaboski, R. (2019). Square-wave voltammetry of two-step surface electrode mechanisms coupled with chemical reactions: A theoretical overview. Electroanalysis, 31(12), 2488–2506.
-
Bredar, A. R., Chown, A. L., Burton, A. R., & Farnum, B. H. (2020). Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Applied Energy Materials, 3(1), 66–98.
-
Ângelo, J., Magalhães, P., Andrade, L., & Mendes, A. (2016). Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Applied Surface Science, 387, 183–189.
-
Wang, Y., Liu, P., Zhu, K., Wang, J., Yan, K., & Liu, J. (2018). One-step fabrication of in situ carbon-coated NiCo2O4@C bilayered hybrid nanostructural arrays as free-standing anode for high-performance lithium-ion batteries. Electrochimica Acta, 273, 1–9.
-
Kokoskarova, P., Stojanov, L., Najkov, K., Ristovska, N., Ruskovska, T., Skrzypek, S., et al. (2023). Square-wave voltammetry of human blood serum. Scientific Reports, 13(1), 8485.
