Fermentation of Residual Wheat Straw by Penicillium chrysogenum and Streptomyces griseus Generates Phytohormones

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Green Chemistry
Received Date: 06/28/2024
Acceptance Date: 07/01/2024
Published On: 2024-08-27
First Page: 1
Last Page: 7

Journal Menu

By: Juan Manuel Sánchez-Yáñez and Liliana Marquez-Benavides

Abstract

Residual lignin from wheat straw (RELIWS) is burned, that causes environmental pollution; as well as global warming by releasing greenhouse gases, an ecological alternative is its microbial by double fermentation by monosporic common fungi and native actinomycete that are able to transform it to phytohormones. The objectives of this work were: i) depolymerization of RELIWS by Penicillium chrysogenum, b) conversion of aromatics of RELIWS into phytohormones by Streptomyces griseus and

c) effect of transformed REWSLI into phytohormones of S. griseus on the primordium growth of Phaseolus vuglaris (bean). In that se, the RELIWS was extracted and depolymerized by P. chrysogenum, the depolymerized RELIWS broth was inoculated with S. griseus, the conversion into phytohormone on the growth of P. vuglaris was analyzed using the response variables: days to emergence, in the stem and root primordium phenology: height and length of root in biomass: aerial fresh/dry weight (AFW/RFW), fresh/dry weight (ADW/RDW). The experimental data were analyzed by ANOVA/Tukey HDS in Statgraphics Centurion. According to the results, S. griseus transformed aromatics from the depolymerization of RELIWS by P. chrysogenum into a phytohormone that caused a positive effect on the phenology and biomass of P. vulgaris primordia, compared to the response of fed P. vulgaris. with a 100% mineral solution and pure gibberellin. It was demonstrated that through double fermentation it is possible to convert RELIWS from P. chrysogenum into a base to transform it from S. griseus into a phytohormone similar to gibberellin. Ongoing research will define what type of phytohormone it is. Although this double fermentation proves the potential of both microorganisms to give added value to RELIWS, a natural resource considered agricultural waste that causes environmental problems, when burned it increases greenhouse gases. It is concluded that microbial potential is an environmental aid tool to prevent global warming.

Loading

Citation:

How to cite this article: Juan Manuel Sánchez-Yáñez and Liliana Marquez-Benavides, Fermentation of Residual Wheat Straw by Penicillium chrysogenum and Streptomyces griseus Generates Phytohormones. International Journal of Green Chemistry. 2024; 10(02): 1-7p.

How to cite this URL: Juan Manuel Sánchez-Yáñez and Liliana Marquez-Benavides, Fermentation of Residual Wheat Straw by Penicillium chrysogenum and Streptomyces griseus Generates Phytohormones. International Journal of Green Chemistry. 2024; 10(02): 1-7p. Available from:https://journalspub.com/publication/fermentation-of-residual-wheat-straw-by-penicillium-chrysogenum-and-streptomyces-griseus-generates-phytohormones/

Refrences:

1. Baltierra-Trejo, E., Silva-Espino, E., Márquez-Benavides, L., & Sánchez-Yáñez, J. M. (2016). Wheat straw lignin degradation induction to aromatics by Aspergillus spp and Penicillium chrysogenum. J. Selva Andina Res. Soc, 7(1), 10-19
2. Savy, D., Canellas, L., Vinci, G., Cozzolino, V., & Piccolo, A. (2017). Humic-Like Water-Soluble Lignins from Giant Reed (Arundo donax L.) Display Hormone-Like Activity on Plant Growth. Journal of Plant Growth Regulation, 36, 995-1001. doi:10.1007/s00344-017-9696-4
3. Savy, D., Cozzolino, V., Nebbioso, A., Drosos, M., Nuzzo, A., Mazzei, P., & Piccolo, A. (2016). Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy. Plant and Soil, 402, 221-233. doi:10.1007/s11104-015- 2780-2.
4. Savy D.; Cozzolino, V Vinci, G.; Nebbioso, A.; Piccolo, A. 2015a. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea Mays, L.). Molecules, 20, 19958–19970, doi:10.3390/molecules201119671.
5. Savy, D.; Cozzolino, V.; Nebbioso, A.; Drosos, M.; Piccolo, A.2015. Bioactivity of water-soluble Lignins from biomass for energy on emergence and early growth of maize (Zea mays, L.). Plant Soil 5: 20 (11): 19950-19970
6. Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. 2022. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Global. Ecol. Conserv. 22, e00902, doi: 10.1016/j.gecco. 2020.e00902.
7. Xu, L.; Geelen, D. 2018. Developing Biostimulants from Agro-Food and Industrial By-Products. Front. Plant. Sci. 9, 1567, doi:10.3389/fpls.2018.01567
8. Abou-Chehade, L.; Al Chami, Z.; De Pascali, S.A.; Cavoski, I.; Fanizzi, F.P. 2018. Biostimulants from Food Processing By-Products: Agronomic, Quality and Metabolic Impacts on Organic Tomato (Solanum Lycopersicum L.): Biostimulants for Enhancing Organic Tomato Quality. J. Sci. Food Agric. 98, 1426–1436, doi:10.1002/jsfa.8610.
9. Sánchez-Gómez, R.; Alonso, G.L.; Salinas, M.R.; Zalacain, A. 2017. Reuse of Vine-Shoots Wastes for Agricultural Purposes. Handbook of Grape Processing By-Products; Elsevier: Amsterdam, The Netherlands, pp. 79–104 ISBN 978-0-12-809870-7.
10. Chang a, Fan J. Wen X. 2012. Screening of fungi capable of highly selective degradation of liginin in rice straw. Int. Biodeter Biodegra 7:26-3
11. Parenti, A., Muguerza, E., Iroz, A.R., Omarini, A., Conde, E., Alfaro, M., Castanera, R., Santoyo, F., Ramírez, L., Pisabarro, A.G., 2013. Induction of laccase activity in the white rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. Bioresour. Technol. 133, 142-
149. doi:http://dx.doi.org/10.1016/j.biortech.2013.01.072
12. Canellas, L.P.; Olivares, F.L.2014. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 1, 1–11.
13. 13.Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., et al. 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainable 13:1140. DOI: 10.3390/ su13031140
14. 14. Cochard, B., Giroud, B., Crovadore, J., Chablais, R., Arminjon, L., and Lefort, F. 2022. Endophytic PGPR from tomato roots isolation, in vitro characterization and in vivo evaluation of treated tomatoes. Microorganisms 10:765. DOI: 10.3390/ microorganisms10040765
15. Ertani, A.; Pizzeghello, D.; Francioso, O.; Tinti, A.; Nardi, S. 2016. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism. Molecules 21, 205, doi:10.3390/molecules21020205.
16. Sánchez-Yáñez, J. M. y Márquez-Benavidez, L. 2014. Despolimerización de lignina residual de paja de trigo con hongos mitospóricos y su conversión en fitohormonas por Azotobacter sp. Informe de investigación. Secretaria de Economía, CONACYT, Gobierno de México, México
17. 17.Arora, D. S., Chander, M., y Gill, P. K 2002. Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International biodeterioration & Biodegradation, 50: 115-120.
18. Walpole ER y Myers SL. Probabilidad y Estadística para Ingeniería Ciencias. Ed. Pearson. 2007. 8a. México,: 509