A Review Article: Applications of Electroanalytical Techniques 

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Analytical and Applied Chemistry
Received Date: 07/26/2024
Acceptance Date: 07/31/2024
Published On: 2024-09-24
First Page: 13
Last Page: 19

Journal Menu

By: Aqsa Ashfaq

Department of Chemistry, Government College
University, Faisalabad, Pakistan

Abstract

Electroanalytical techniques are thought to be the most significant area of analytical chemistry, which identify the properties as well as quantify the given analyte(s) within an electrochemical cell. The high sensitivity, high analysis speed, low sample and solvent consumption, high scan rate, low operating cost of electro analysis make it highly advantageous in all situations. A summary of electroanalytical techniques is provided, with an emphasis on their most common uses in the identification of distinct analytes. These techniques include cyclic voltammetry (CV), square wave voltammetry (SWV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and voltammetry in square waves (SWV). This review explains the electrochemical applications of electroanalytical techniques in different fields. CV is widely used for studying the electrochemical properties of molecules, particularly in redox reactions. It provides detailed information about the oxidation and reduction processes of the analytes. SWV offers enhanced sensitivity and is particularly useful in trace analysis of complex matrices. DPV is employed for its high sensitivity and resolution in detecting low concentrations of analytes. EIS is used for characterizing the electrical properties of materials and interfaces, often in the study of corrosion, batteries, and sensor development. The versatility and efficiency of these techniques make them indispensable in environmental monitoring, pharmaceutical analysis, and material science, among other fields.

Loading

Citation:

How to cite this article: Aqsa Ashfaq, A Review Article: Applications of Electroanalytical Techniques . International Journal of Analytical and Applied Chemistry. 2024; 10(02): 13-19p.

How to cite this URL: Aqsa Ashfaq, A Review Article: Applications of Electroanalytical Techniques . International Journal of Analytical and Applied Chemistry. 2024; 10(02): 13-19p. Available from:https://journalspub.com/publication/a-review-article-applications-of-electroanalytical-techniques/

Refrences:

1.Li J, Peng Z, Wang E. Tackling grand challenges of the 21st century with electroanalytical
chemistry. J Am Chem Soc. 2018;140(34):10629–10638.
2. Ahmadi M, Ghoorchian A, Dashtian K, Kamalabadi M, Madrakian T, Afkhami A. Application of
magnetic nanomaterials in electroanalytical methods: A review. Talanta. 2021;225:121974.
3. Scholz F. Electroanalytical methods. 1st ed. Berlin: Springer; 2010.
4. Minteer SD. Advances in electroanalytical chemistry. J Am Chem Soc. 2018;140(8):2701–2703.
5. Baig N, Sajid M, Saleh TA. Recent trends in nanomaterial-modified electrodes for
electroanalytical applications. TrAC Trends Anal Chem. 2019;111:47–61.
6. 6. Cetinkaya A, Kaya SI, Ozkan SA. A collection of the best practice examples of
electroanalytical applications in education: From polarography to sensors. J Solid State
Electrochem. 2024;28(3):869–895.
7. Olson MP, LaCourse WR. Voltammetry. In: Ewing’s Analytical Instrumentation Handbook. CRC
Press; 2019. p. 509–522.
8. Sandford C, Edwards MA, Klunder KJ, Hickey DP, Li M, Barman K, et al. A synthetic chemist’s
guide to electroanalytical tools for studying reaction mechanisms. Chem Sci. 2019;10(26):6404–
6422.
9. Meddings N, Heinrich M, Overney F, Lee JS, Ruiz V, Napolitano E, et al. Application of
electrochemical impedance spectroscopy to commercial Li-ion cells: A review. J Power Sources.
2020;480:22874210. Taleb A, Yanpeng X, Dubot P. Self-organized gold nanoparticles modified HOPG electrodes:
Electrochemical stability and its use for electrochemical nanosensing applications. Appl Surf Sci.
2017;420:110–117.
11. 11. Uslu B, Ozkan SA. Electroanalytical methods for the determination of pharmaceuticals: a
review of recent trends and developments. Anal Lett. 2011;44(16):2644–2702.
12. 12. Carpani I, Conti P, Lanteri S, Legnani PP, Leoni E, Tonelli D. Direct quantification of test
bacteria in synthetic water-polluted samples by square wave voltammetry and chemometric
methods. Biosensors and Bioelectronics. 2008;23(7):959–964.
13. 13. Choudhary YS, Jothi L, Nageswaran G. Electrochemical characterization. In: Spectroscopic
Methods for Nanomaterials Characterization. Elsevier; 2017. p. 19–54.
14. 14. Farahi A, Lahrich S, Achak M, El Gaini L, Bakasse M, El Mhammedi MA. Parameters
affecting the determination of paraquat at silver rotating electrodes using differential pulse
voltammetry. Anal Chem Res. 2014;1:16–21.
15. 15. Siddiqui MR, AlOthman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: A
review. Arab J Chem. 2017;10: S1409–S1421.
16. 16. Mirčeski V, Stojanov L, Skrzypek S. Recent advances and prospects of square-wave
voltammetry. Contributions. Section Nat Math Biotech Sci. 2018;39(2).
17. 17. Aydemir N, McArdle H, Patel S, Whitford W, Evans CW, Travas-Sejdic J, Williams DE. A
Label-free sensitive real-time semiquantitative electrochemical measurement method for DNA
polymerase amplification (ePCR). Anal Chem. 2015;87(10):5189–5197.
18. 18. Arshad N, Farooqi SI. Cyclic voltammetric DNA binding investigations on some anticancer
potential metal complexes: A review. Appl Biochem Biotechnol. 2018;186(4):1090–1110.
19. 19. Barbosa PFP, Vieira EG, Cumba LRP, Paim LL, Nakamura APR, Andrade RDA, do Carmo
DR. Voltammetric techniques for pesticides and herbicides detection-an overview. Int J
Electrochem Sci. 2019;14(4):3418–3433.
20. 20. Al-Rashdi AA, Farghaly OA, Naggar AH. Voltammetric determination of pharmaceutical
compounds at bare and modified solid electrodes: A review. J Chem Pharm Res. 2018;10:21–43.
21. 21. Gupta AK, Dubey RS, Malik JK. Application of modern electroanalytical techniques: Recent
trend in pharmaceutical and drug analysis. Int J Pharm Sci Res. 2013;4(7):2450–2457.
22. 22. Jin H, Gui R, Yu J, Lv W, Wang Z. Fabrication strategies, sensing modes, and analytical
applications of ratiometric electrochemical biosensors. Biosens Bioelectron. 2017;91:523–537.
23. 23. Mirceski V, Gulaboski R. Recent achievements in square-wave voltammetry: A review.
Maced J Chem Chem Eng. 2014;33(1):1–12.
24. 24. Švorc Ľ, Sochr J, Tomčík P, Rievaj M, Bustin D. Simultaneous determination of paracetamol
and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode.
Electrochim Acta. 2012;68:227–234.
25. 25. Brett CM. Electrochemical impedance spectroscopy in the characterisation and application of
modified electrodes for electrochemical sensors and biosensors. Molecules. 2022;27(5):1497.
26. 26. Srivastava AK, Upadhyay SS, Rawool CR, Punde NS, Rajpurohit AS. Voltammetric
techniques for the analysis of drugs using nanomaterials-based chemically modified electrodes.
Curr Anal Chem. 2019;15(3):249–276.
27. 27. Janeva M, Kokoskarova P, Maksimova V, Gulaboski R. Square‐wave voltammetry of two‐
step surface electrode mechanisms coupled with chemical reactions: A theoretical overview.
Electroanalysis. 2019;31(12):2488–2506.
28. 28. Bredar AR, Chown AL, Burton AR, Farnum BH. Electrochemical impedance spectroscopy of
metal oxide electrodes for energy applications. ACS Appl Energy Mater. 2020;3(1):66–98.
29. 29. Ângelo J, Magalhães P, Andrade L, Mendes A. Characterization of TiO2-based
semiconductors for photocatalysis by electrochemical impedance spectroscopy. Appl Surf Sci.
2016;387:183–189.
30. 30. Wang Y, Liu P, Zhu K, Wang J, Yan K, Liu J. One-step fabrication of in situ carbon-coated
NiCo2O4@C bilayered hybrid nanostructural arrays as free-standing anode for high-performance
lithium-ion batteries. Electrochim Acta. 2018;273:1–9
31. Kokoskarova P, Stojanov L, Najkov K, Ristovska N, Ruskovska T, Skrzypek S, et al. Squarewave voltammetry of human blood serum. Sci Rep. 2023;13(1):8485.