By: Rahul Ghodake, Vaibhav Godase, Soham Modi, and Vishal Misal
1-2 Assistant Professor , 3-4 Students
Department of Electronics and Telecommunication Engineering, SKN Sinhgad College of Engineering, Pandharpur, Maharashtra, India
Portable biomedical devices such as ECG, EEG, and wearable health monitors require analog
front-end circuits that operate at extremely low power while maintaining sufficient gain,
bandwidth, and noise performance. Among these circuits, the operational amplifier plays a
critical role in signal amplification and conditioning. This paper presents the design and
analysis of a low-power CMOS operational amplifier optimized for portable biomedical
applications. The proposed amplifier employs a two-stage architecture using power-efficient
biasing techniques to achieve low power consumption under low supply voltage operation.
Designed using 180 nm CMOS technology, the amplifier operates at a supply voltage of 1.8
V and consumes minimal power while providing high open-loop gain and adequate phase
margin. Simulation results demonstrate that the proposed design meets the requirements of
low-power biomedical signal processing applications.
CMOS operational amplifier, low power design, biomedical electronics, analog
integrated circuits, portable medical devices
![]()
Citation:
Refrences:
1. Gray PR, Hurst PJ, Meyer RG, Lewis SH. Analysis and design of analog
integrated circuits. 6th ed. Hoboken (New Jersey): Wiley; 2024..
2. Baker RJ. CMOS circuit design, layout, and simulation. 2nd ed. Hoboken (New
Jersey): Wiley-IEEE Press; 2005.
3. Razavi B. Design of analog CMOS integrated circuits. 2nd ed. New York (NY):
McGraw-Hill Education; 2017.
4. Huijsing J. Operational amplifiers: theory and design. 3rd ed. Cham
(Switzerland): Springer International Publishing; 2017. doi:10.1007/978-3-319-
28127-8.
5. Zhang F, Holleman J, Otis BP. Design of ultra-low power biopotential amplifiers
for biosignal acquisition applications. IEEE transactions on biomedical circuits
and systems. 2012 Jan 11;6(4):344-55.
6. Allen PE, Holberg DR. CMOS analog circuit design. 2nd ed. New York (NY):
Oxford University Press; 2012.
7. Chicca E, Stefanini F, Bartolozzi C, Indiveri G. Neuromorphic electronic
circuits for building autonomous cognitive systems. Proc IEEE.
2014;102(9):1367–1388. doi:10.1109/JPROC.2014.2313954.
8. Webster JG. Medical instrumentation: application and design. 4th ed. Hoboken
(NJ): John Wiley & Sons; 2009.
9. Enz CC, Krummenacher F, Vittoz EA. An analytical MOS transistor model valid
in all regions of operation and dedicated to low-voltage and low-current
applications. Analog Integr Circuits Signal Process. 1995;8:83–114.
doi:10.1007/BF01239381.
10. Tsividis Y. Operation and modeling of the MOS transistor. New York (NY):
McGraw-Hill; 1987.
11. Sharpeshkar R. Ultra low power bioelectronics: Fundamentals, biomedical
applications, and bio-inspired system. Cambridge University Press. 2010.
12. Sharpeshkar R. Ultra low power bioelectronics: Fundamentals, biomedical
applications, and bio-inspired system. Cambridge University Press. 2010.
13. Leung KN, Mok PK. A capacitor-free CMOS low-dropout regulator with
damping-factor-control frequency compensation. IEEE Journal of Solid-State
Circuits. 2003 Sep 29;38(10):1691-702.
14. Jain M. A Low Power Low Voltage CMOS Based Operational
Transconductance Amplifier for Biomedical Application. International Journal
of Scientific Engineering and Technology Research (IJSETR). 2018 Jan 1.
15. Hastings A. The art of analog layout. 2nd ed. Upper Saddle River (NJ):
Prentice Hall; 2006.
16. Song J. Ultra low power analog-to-digital converter for biomedical devices
[master’s thesis]. Stockholm (Sweden): Royal Institute of Technology; 2011.
17. Lau, J.G. & Marzuki, Arjuna. (2014). A low power low noise CMOS amplifier
for portable ECG monitoring application. Journal of Engineering and Applied
Sciences. 9. 2448-2453.
18. Chandrakumar H, Marković D. A high dynamic-range neural recording chopper
amplifier for simultaneous neural recording and stimulation. IEEE Journal of
Solid-State Circuits. 2017 Jan 27;52(3):645-56.
19. Kassanos P, Constantinou L, Triantis IF, Demosthenous A. An integrated analog
readout for multi-frequency bioimpedance measurements. IEEE Sensors
Journal. 2014 Apr 7;14(8):2792-800.
20. Vinita, Saini MK. Low power operational transconductance amplifier for
biomedical application using CMOS 90 nm technology. J Emerg Technol Innov
Res. 2018 Dec;5(12):675–679.
21. Tyagi S, Saurav S, Pandey A, Priyadarshini P, Ray M, Pal BB, Nath V. A 21nW
CMOS operational amplifier for biomedical application. InProceedings of the
international conference on nano-electronics, circuits & communication systems
2017 Mar 25 (pp. 389-396). Singapore: Springer Singapore.
22. Ghovanloo M, Najafi K. A wideband frequency-shift keying wireless link for
inductively powered biomedical implants. IEEE Transactions on Circuits and
Systems I: Regular Papers. 2004 Dec 6;51(12):2374-83.
23. Goel A, Singh G. Novel high gain low noise CMOS instrumentation amplifier
for biomedical applications. In2013 international conference on machine
intelligence and research advancement 2013 Dec 21 (pp. 392-396). IEEE.
24. Säckinger E. Analysis and design of transimpedance amplifiers for optical
receivers. Hoboken (NJ): John Wiley & Sons; 2018.
25. Shacham A, Bergman K, Carloni LP. Photonic networks-on-chip for future
generations of chip multiprocessors. IEEE Transactions on Computers. 2008
Sep 30;57(9):1246-60.for high-performance interconnects. IEEE Micro. 2007;
27(1):15-22.
26. Miller DA. Optical interconnects to electronic chips. Applied optics. 2010 Sep
1;49(25):F59-70.
27. Reed GT, Mashanovich G, Gardes FY, Thomson DJ. Silicon optical modulators.
Nat Photonics. 2010;4:518–526. doi:10.1038/nphoton.2010.179.
28. Singh RK, Saxena A, Rastogi M. Silicon on insulator technology review.
International Journal of Engineering Sciences & Emerging Technologies. 2011
May;1(1):1-6.
29. Bogaerts W, Dumon P, Jaenen P, Wouters J, Beckx S, Wiaux V, Van Thourhout
D, Taillaert D, Luyssaert B, Baets R. Silicon-on-insulator nanophotonics.
InIntegrated Optics: Theory and Applications 2005 Sep 30 (Vol. 5956, pp. 181-
195). SPIE.
30. Mitomi O, Kasaya K, Miyazawa H. Design of a single-mode tapered waveguide
for low-loss chip-to-fiber coupling. IEEE Journal of Quantum Electronics. 2002
Aug 6;30(8):1787-93.
31. Almeida VR, Xu Q, Barrios CA, Lipson M. Guiding and confining light in void
nanostructure. Optics letters. 2004 Jun 1;29(11):1209-11.
32. Grillot F, Vivien L, Laval S, Cassan E. Propagation loss in single-mode
ultrasmall square silicon-on-insulator optical waveguides. Journal of lightwave
technology. 2006 Feb 1;24(2):891.
33. Bauters JF, Heck MJ, John D, Dai D, Tien MC, Barton JS, Leinse A, Heideman
RG, Blumenthal DJ, Bowers JE. Ultra-low-loss high-aspect-ratio Si3N4
waveguides. Optics express. 2011 Feb 3;19(4):3163-74.
34. Abbaszadeh K, Abd-El-Hafiz SK, Abdallh AA, Abe NM, Abed NY. 2010 Index
IEEE Transactions on Magnetics Vol. 46. IEEE Transactions on Magnetics.
2010 Dec;46(12):4113.
35. Witzens J. High-speed silicon photonics modulators. Proceedings of the IEEE.
2018 Nov 19;106(12):2158-82.
36. Chrostowski L, Hochberg M. Silicon photonics design: from devices to systems.
Cambridge University Press; 2015 Mar 12.
37. Lacava C, Ettabib MA, Petropoulos P. Nonlinear silicon photonic signal
processing devices for future optical networks. Applied Sciences. 2017 Jan
20;7(1):103.
38. Madden S, Jin Z, Choi D, Debbarma S, Bulla D, Luther-Davies B. Low loss
coupling to sub-micron thick rib and nanowire waveguides by vertical tapering.
Optics express. 2013 Feb 5;21(3):3582-94.
39. Xu T, Dong Y, Zhong Q, Zheng S, Qiu Y, Zhao X, Jia L, Lee C, Hu T. Mid-
infrared integrated electro-optic modulators: a review. Nanophotonics. 2023 Sep
28;12(19):3683-706.
40. Mariammal K, Arunadevi R, Lurdhumary J, Ramya R, Vinotheni MS, DR S.
IOT Based Smart Home Automation Using ESP32. In2025 International
Conference on Computing and Communication Technologies (ICCCT) 2025
Apr 16 (pp. 1-5). IEEE.
41. Godase V, Pawar P, Nagane S, Kumbhar S. Automatic railway horn system
using node MCU. Journal of Control & Instrumentation. 2024 Jan;15(1).
42. Godase V, Godase J. Diet prediction and feature importance of gut microbiome
using machine learning. Evolution in Electrical and Electronic Engineering.
2024 Nov 6;5(2):214-9.
43. Godase V. A Comprehensive Review on Scalable Arduino Radar Platform for
Real-time Object Detection and Mapping. Journal of Microprocessor and
Microcontroller Research e-ISSN. 2025 May 16:3048-6637.
44. Godase V. A comprehensive study of revolutionizing EV charging with solar-
powered wireless solutions. Advance Research in Power Electronics and
Devices e-ISSN. 2025 Apr 18:3048-7145.
45. Godase V. Advanced Neural Network Models for Optimal Energy Management
in Microgrids with Integrated Electric Vehicles. InProceedings of the
International Conference on Trends in Material Science and Inventive Materials
(ICTMIM-2025) DVD Part Number: CFP250J1-DVD 2025 Apr 18.
46. Dange R, Attar E, Ghodake P, Godase V. Smart agriculture automation using
ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math. 2023 Jul(35):1-9.
47. Godase V. Optimized Algorithm for Face Recognition using Deepface and
Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science
Journal. 2025 May 5.
48. Godase V, Lawande A, Mane K, Davad K, Gangonda S. Pipeline survey robot.
Int J Sci Res Dev (IJSRD). 2024;12(3):141.
49. Godase V. Navigating the digital battlefield: An in-depth analysis of cyber-
attacks and cybercrime. International Journal of Data Science, Bioinformatics
and Cyber Security. 2025 Jan 17;1(1):16-27.
50. Salunkhe A, Pawar V, Pise P, Mule S, Survase A, Godase V, Zambre S. A
review on real-time rfid-based smart attendance systems for efficient record
management. Advance Research in Analog and Digital Communications. 2025
Aug;2(2):32-46.
51. Vaibhav VG. A Neuromorphic-Inspired, Low-Power VLSI Architecture for
Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State
Devices. 2025;12(2):41-7p.
