Fungal-Mediated Synthesis of Silver Nanoparticles Using Fusarium Oxysporum and Their Antimicrobial Evaluation

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Applied Nanotechnology
Received Date: 10/10/2024
Acceptance Date: 10/21/2024
Published On: 2024-10-26
First Page: 1
Last Page: 11

Journal Menu

By: Sushama Nikam, Kunal Ramchandra Shelar, Madhav Balaji Munde, Tanmay Yuvraj Bhosale, Purva Santosh Bedake, Rohan Machhindra Hagawane, and Sandhya Anil Ghadge

Abstract

Nanotechnology has shown significant antimicrobial properties in the form of metal nanoparticles like silver, copper, and zinc. Silver nanoparticles (AgNPs) are biosynthesized from the fungus Fusarium oxysporum, isolated from infected ginger, which has antibacterial and antifungal properties. The synthesized AgNPs are reddish brown and have a maximum absorbance of 451 nm. The functional groups of AgNPs are investigated using FTIR analysis. SEM-EDX Shows Shape of Particle Spherical-Rod, Size from 6.13 to 32.04 nm, and Elements. The antimicrobial activity is demonstrated against Fusarium oxysporum. These nanoparticles are used in nano fungicides and are produced in an environmentally friendly manner using a fungal strain of Fusarium oxysporum capable of rapidly synthesizing AgNPs. In the present study, Fusarium oxysporum is a cost-effective and environmentally friendly method for creating AgNPs, suitable for large-scale protein production and medication administration.

Keywords – Fusarium oxysporum, silver nanoparticles, biosynthesis, antimicrobial activity

Loading

Citation:

How to cite this article: Sushama Nikam, Kunal Ramchandra Shelar, Madhav Balaji Munde, Tanmay Yuvraj Bhosale, Purva Santosh Bedake, Rohan Machhindra Hagawane, and Sandhya Anil Ghadge, Fungal-Mediated Synthesis of Silver Nanoparticles Using Fusarium Oxysporum and Their Antimicrobial Evaluation. International Journal of Applied Nanotechnology. 2024; 10(02): 1-11p.

How to cite this URL: Sushama Nikam, Kunal Ramchandra Shelar, Madhav Balaji Munde, Tanmay Yuvraj Bhosale, Purva Santosh Bedake, Rohan Machhindra Hagawane, and Sandhya Anil Ghadge, Fungal-Mediated Synthesis of Silver Nanoparticles Using Fusarium Oxysporum and Their Antimicrobial Evaluation. International Journal of Applied Nanotechnology. 2024; 10(02): 1-11p. Available from:https://journalspub.com/publication/ijan/article=11624

Refrences:

1. Omar S, Dawood D. Using soil fungus, Fusarium Oxysporum for green synthesis of silver nanoparticles and evaluation of their antimicrobial effects. J Agric Chem Biotechnol. 2016;7(11):275–281. doi: 10.21608/jacb.2016.41140.
2. Birla SS, Gaikwad SC, Gade AK, Rai MK. Rapid synthesis of silver nanoparticles from fusarium oxysporum by optimizing physicocultural conditions. Sci World J. 2013;2013. doi: 10.1155/2013/796018.
3. Khan NT, Jameel M, Jameel J. Silver nanoparticles biosynthesis by Fusarium oxysporum and determination of its antimicrobial potency. J Nanomedine Biotherapeutic Discov. 2017;07(01).doi: 10.4172/2155-983x.1000145.
4. Korbekandi H, Ashari Z, Iravani S, Abbasi S. Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res. 2013;12(3):289–298.
5. Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology. 2005;3:1–7, 2005, doi: 10.1186/1477–3155–3–8.
6. Fatima F, Aldawsari MF, Ahmed MM, Anwer MK, Naz M, Ansari MJ, et al. Green synthesized silver nanoparticles using tridax procumbens for topical application: Excision wound model and histopathological studies. Pharmaceutics. 2021;13(11):1754.
7. Rizwan M, Amin S, Malikovna BK, Rauf A, Siddique M, Ullah K, et al. Green synthesis and antimicrobial potential of silver nanoparticles with Boerhavia procumbens extract. J Pure Appl Microbiol. 2020;14(2):1437–1451. doi: 10.22207/JPAM.14.2.42.
8. Selvam K, Sudhakar C, Govarthanan M, Thiyagarajan P, Sengottaiyan A, Senthilkumar B, et al. Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res Appl Sci. 2017;10(1):6–12. doi: 10.1016/j.jrras.2016.02.005.
9. Badeggi UM, Badmus JA, Botha SS, Ismail E, Marnewick JL, Africa CW, et al. Biosynthesis, characterization, and biological activities of procyanidin capped silver nanoparticles. J Funct Biomater. 2020;11(3):66. doi: 10.3390/JFB11030066.
10. Santos TS, Silva TM, Cardoso JC, Albuquerque-Júnior RLC, Zielinska A, Souto EB, et al. Biosynthesis of silver nanoparticles mediated by Entomopathogenic fungi: Antimicrobial resistance, nanopesticides, and toxicity. Antibiotics (Basel). 2021;10(7):852. doi: 10.3390/antibiotics10070852
11. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces. 2003;28(4):313–318. doi: 10.1016/S0927–7765(02)00174–1.
12. Syed A Ahmad A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surfaces B Biointerfaces. 2012;97:27–31. doi: 10.1016/j.colsurfb.2012.03.026.
13. Barbosa AC, Silva LP, Ferraz CM, Tobias FL, de Araújo JV, Loureiro B, et al. Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans. Int J Nanomedicine. 2019:2341–2348. doi: 10.2147/IJN.S193679.
14. Tyagi S, Tyagi PK, Gola D, Chauhan N, Bharti RK. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl Sci. 2019;1(12):1–9. doi: 10.1007/s42452–019–1593-y.
15. Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, et al. Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One. 2011;6(6):e21401. doi: 10.1371/journal.pone.0021401.
16. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surfaces B Biointerfaces. 2006;53(1):55–59. doi: 10.1016/j.colsurfb.2006.07.014.
17. Samy MA, Abbassy MA, Hafez EE, Rabea EI, Aseel DG. Biosynthesis and characterization of silver nanoparticles produced by plant extracts and its antimicrobial activity. South Asian J Res Microbiol. 2019:1–14. doi: 10.9734/sajrm/2019/v3i130077.
18. Ghareib M, Tahon MA, Saif MM, Abdallah WES. Rapid extracellular biosynthesis of silver nanoparticles by cunninghamella phaeospora culture supernatant. Iran J Pharm Res. 2016;15(4):915–924.
19. Zaki S, El Kady MF, Abd-El-Haleem D. Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull. 2011;46(10):1571–1576. doi: 10.1016/j.materresbull.2011.06.025.
20. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C. 2015;53:298–309. doi: 10.1016/j.msec.2015.04.048.
21. Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M, Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health. 2013;10(10):5221–5238. doi: 10.3390/ijerph10105221.
22. Ullah A, Yin X, Wang F, Xu B, Mirani ZA, Xu B, et al. Biosynthesis of Selenium Nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules. 2021;26(18):5559. doi: 10.3390/molecules26185559
23. Peart PC, McCook KP, Russell FA, Reynolds WF, Reese PB. Hydroxylation of steroids by Fusarium oxysporum, Exophiala jeanselmei and Ceratocystis paradoxa. Steroids. 2011;76(12):1317–1330. doi: 10.1016/j.steroids.2011.06.010.
24. De Matos RA, da S. Cordeiro T, Samad RE, Vieira ND, Courrol LC. Green synthesis of stable silver nanoparticles using Euphorbia milii latex. Colloids Surfaces A Physicochem Eng Asp. 2011;389(1–3):134–137. doi: 10.1016/j.colsurfa.2011.08.040.
25. Von White G, Kerscher P, Brown RM, Morella JD, McAllister W, Dean D, et al. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J Nanomater. 2012;2012(1):730746. doi: 10.1155/2012/730746.
26. Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M. Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran.2019;19(3):926–929. doi: 10.1016/j.scient.2012.01.010.
27. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AEZMA, Husseiny SM. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. 2017;24(1):208–216. doi: 10.1016/j.sjbs.2016.02.025.
28. Obaid AY, Al-Thabaiti SA, El-Mossalamy EH, Al-Harbi LM, Khan Z. Extracellular bio-synthesis of silver nanoparticles. Arab J Chem. 2017;10(2):226–231. doi: 10.1016/j.arabjc.2014.12.035.
29. Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A. Biosynthesis and stabilization of Au and Au-Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater. 2008;9(3). doi: 10.1088/1468–6996/9/3/035012.
30. Sadowski Z. Biosynthesis and application of silver and gold nanoparticles. Silver nanoparticles. 2010;22:257–277. doi: 10.5772/8508.
31. Rai M, Ingle AP, Paralikar P, Anasane N, Gade R, Ingle P. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol. 2018;102(16): 6827–6839. doi: 10.1007/s00253–018–9145–8.
32. Homem NC, Paixão RM, Miranda CS, Antunes JC, Amorim MT, Felgueiras HP. Potential biomolecules of microbial origin against infectious diseases. In: Microbial Systematics. CRC Press; 2023. pp. 14–42.
33. Mirzadeh S, Darezereshki E, Bakhtiari F, Fazaelipoor MH, Hosseini MR. Characterization of zinc sulfide (ZnS) nanoparticles Biosynthesized by Fusarium oxysporum. Mater Sci Semicond Process. 2013;16(2):374–378. doi: 10.1016/j.mssp.2012.09.008.
34. Kamal A, Zaki S, Shokry H, Abd-El-haleem D. Using ginger extract for synthesis of metallic nanoparticles and their applications in water treatment. J Pure Appl Microbiol. 2020;14(2): 1227–1236. doi: 10.22207/JPAM.14.2.17.
35. Jennings JC, Apel-Birkhold PC, Mock NM, Baker CJ, Anderson JD, Bailey BA. Induction of defense responses in tobacco by the protein Nepl from fusarium oxysporum. Plant Sci. 2001;161(5):891–899. doi: 10.1016/S0168–9452(01)00483–6.
36. Husseiny SM, Salah TA, Anter HA. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci. 2015;4(3):225–231. doi: 10.1016/j.bjbas.2015.07.004.
37. Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, et al. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol. 2014;172:4084–4098. doi: 10.1007/s12010-014-0809-2.
38. Choudhury SR, Ghosh M, Mandal A, Chakravorty D, Pal M, Pradhan S, et al. Surface-modified sulfur nanoparticles: An effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol. 2011;90(2):733–743. doi: 10.1007/s00253-011-3142-5.
39. Bramhanwade K, Shende S, Bonde S, Gade A, Rai M. Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett. 2016;14(2):229–235. doi: 10.1007/s10311-015-0543-1.