Electrification of the Chemical Industry: A Next-Generation Approach to Sustainable Chemical Synthesis and Greenhouse Gas Mitigation

Volume: 11 | Issue: 01 | Year 2025 | Subscription
International Journal of Environmental Chemistry
Received Date: 02/07/2025
Acceptance Date: 03/25/2025
Published On: 2025-03-11
First Page: 6
Last Page: 17

Journal Menu


By: Shivangi Pandey

Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Abstract

The imperative to mitigate greenhouse gas emissions and transition to sustainable energy sources is driving a paradigm shift in the chemical industry. Electrification, leveraging renewable energy sources, emerges as a next-generation approach to transform traditional chemical synthesis routes, often reliant on fossil fuels and energy-intensive processes. This review explores the burgeoning field of electrified chemical synthesis, focusing on key examples – electrochemical CO2 reduction reaction (CO2RR), electrochemical ammonia (NH3) synthesis, and electrochemical hydrogen peroxide (H2O2) production – where electrification offers significant environmental and efficiency advantages. We analyse recent advancements in electrocatalyst materials, particularly highlighting metal-free carbon catalysts and hetero-structured nanomaterials, and discuss the intricate scientific details governing reaction mechanisms, active site identification, and product selectivity. Furthermore, this article elucidates the gaps that need to be bridged and future research directions for realizing the full potential of electrification in revolutionizing the chemical industry and achieving substantial greenhouse gas mitigation.

Loading

Citation:

How to cite this article: Shivangi Pandey, Electrification of the Chemical Industry: A Next-Generation Approach to Sustainable Chemical Synthesis and Greenhouse Gas Mitigation. International Journal of Environmental Chemistry. 2025; 11(01): 6-17p.

How to cite this URL: Shivangi Pandey, Electrification of the Chemical Industry: A Next-Generation Approach to Sustainable Chemical Synthesis and Greenhouse Gas Mitigation. International Journal of Environmental Chemistry. 2025; 11(01): 6-17p. Available from:https://journalspub.com/publication/ijec/article=15705

Refrences:

  1. Velasco-Herrejón P, Bauwens T, Friant MC. Challenging dominant sustainability worldviews on the energy transition: Lessons from Indigenous communities in Mexico and a plea for pluriversal technologies. World Development. 2022 Feb 1;150:105725.
  2. Thommes M, Schlumberger C. Characterization of nanoporous materials. Annual review of chemical and biomolecular engineering. 2021 Jun 7;12(1):137–62.
  3. Ige OE, Von Kallon DV, Desai D. Carbon emissions mitigation methods for cement industry using a systems dynamics model. Clean Technol Environ Policy. 2024 Mar 1 ;26(3):579–97.
  4. Cao D, Zhang Y, Ji T, Zhu H. In operando neutron imaging characterizations of all-solid-state batteries. MRS Bull. 2023 Dec 1;48(12):1257–68.
  5. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, et al. Single-Molecule Electron Transfer in Electrochemical Environments.
  6. Whipple DT, Kenis PJA. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. Journal of Physical Chemistry Letters. 2010 Dec 16 ;1(24):3451–8.
  7. Li J, Xia Y, Song X, Chen B, Zare RN. Continuous ammonia synthesis from water and nitrogen via contact electrification. Proc Natl Acad Sci U S A. 2024 Jan 23 ;121(4):e2318408121.
  8. Ingle AA, Ansari SZ, Shende DZ, Wasewar KL, Pandit AB. Progress and prospective of heterogeneous catalysts for H2O2 production via anthraquinone process. Environmental Science and Pollution Research. 2022 Dec 1;29(57):86468–84.
  9. Raveendran A, Chandran M, Dhanusuraman R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv. 2023 Jan 26;13(6):3843–76.
  10. Park J, Lim JH, Kang JH, Lim J, Jang HW, Shin H, et al. A review of understanding electrocatalytic reactions in energy conversion and energy storage systems via scanning electrochemical microscopy. Journal of Energy Chemistry. 2024 Apr 1;91:155–77.
  11. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, Dubois DL, Dupuis M, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. 2013 Aug 14;113(8):6621–58.
  12. Whipple DT, Kenis PJA. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. Journal of Physical Chemistry Letters. 2010 Dec 16;1(24):3451–8.
  13. Wood TK, Gurgan I, Howley ET, Riedel-Kruse IH. Converting methane into electricity and higher-value chemicals at scale via anaerobic microbial fuel cells. Renewable and Sustainable Energy Reviews. 2023 Dec 1;188:113749.
  14. Wu J, Yang H. Platinum-based oxygen reduction electrocatalysts. Acc Chem Res. 2013 Aug 20;46(8):1848–57.
  15. Singla MK, Nijhawan P, Oberoi AS. Hydrogen fuel and fuel cell technology for cleaner future: a review. Environmental Science and Pollution Research. 2021 Apr 1;28(13):15607–26.
  16. Bai J, Shao J, Yu Q, Demir M, Nazli Altay B, Muhammad Ali T, et al. Sulfur-Doped porous carbon Adsorbent: A promising solution for effective and selective CO2 capture. Chemical Engineering Journal. 2024 Jan 1;479.
  17. Bai J, Huang J, Jiang Q, Jiang W, Demir M, Kilic M, et al. Synthesis and characterization of polyphenylene sulfide resin-derived S-doped porous carbons for efficient CO2 capture. Colloids Surf A Physicochem Eng Asp. 2023 Oct 5;674.
  18. Shao J, Wang J, Yu Q, Yang F, Demir M, Altinci OC, et al. Unlocking the potential of N-doped porous Carbon: Facile synthesis and superior CO2 adsorption performance. Sep Purif Technol. 2024 Apr 1;333.
  19. Bai J, Huang J, Yu Q, Demir M, Kilic M, Altay BN, et al. N-doped porous carbon derived from macadamia nut shell for CO2 adsorption. Fuel Processing Technology. 2023 Oct 1;249.
  20. Rivera-Gavidia LM, Luis-Sunga M, Bousa M, Vales V, Kalbac M, Arévalo MC, et al. S- and N-doped graphene-based catalysts for the oxygen evolution reaction. Electrochim Acta. 2020 Apr 20;340.
  21. Priyadarsini A, Mallik BS. Effects of Doped N, B, P, and S Atoms on Graphene toward Oxygen Evolution Reactions. ACS Omega. 2021 Mar 2;6(8):5368–78.
  22. Guo J, Zhang S, Zheng M, Tang J, Liu L, Chen J, et al. Graphitic-N-rich N-doped graphene as a high-performance catalyst for oxygen reduction reaction in alkaline solution. Int J Hydrogen Energy. 2020 Nov 13;45(56):32402–12.
  23. Li P, Qiu Y, Liu S, Li H, Zhao S, Diao J, et al. Heterogeneous Mo2C/Fe5C2 Nanoparticles Embedded in Nitrogen-Doped Carbon as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Eur J Inorg Chem. 2019 Jul 23 ;2019(27):3235–41.
  24. Li S, Ren P, Yang C, Liu X, Yin Z, Li W, et al. Fe5C2 nanoparticles as low-cost HER electrocatalyst: the importance of Co substitution. Sci Bull (Beijing). 2018 Oct 30;63(20):1358–63.
  25. Bathena T, Phung T, Murugesan V, Goulas KA, Karakoti AS, Ramasamy K. Transition metal oxides in CO2 driven oxidative dehydrogenation: Uncovering their redox properties. Journal of CO2 Utilization. 2024 Jun 1;84:102848.
  26. Meng Y, Ding J, Liu Y, Hu G, Feng Y, Wu Y, et al. Advancements in Amorphous Oxides for Electrocatalytic Carbon Dioxide Reduction. Materials Today Catalysis. 2024 Dec 1;7:100065.
  27. Oloman C, Li H. Electrochemical processing of carbon dioxide. ChemSusChem. 2008;1(5):385–91.
  28. Yu F, Deng K, Du M, Wang W, Liu F, Liang D. Electrochemical CO2 reduction: From catalysts to reactive thermodynamics and kinetics. Carbon Capture Science & Technology. 2023 Mar 1;6:100081.
  29. Fauzi A, Chen X, Zhao H, Cao S, Kong L, Huang S, et al. Recent progress of M-N-C single atom electrocatalysts for carbon dioxide reduction reaction. Next Energy. 2023 Dec 1;1(4):100045.
  30. Duan X, Xu J, Wei Z, Ma J, Guo S, Wang S, et al. Metal-Free Carbon Materials for CO2 Electrochemical Reduction. Advanced Materials. 2017 Nov 1;29(41):1701784.
  31. Ruiz-López E, Gandara-Loe J, Baena-Moreno F, Reina TR, Odriozola JA. Electrocatalytic CO2 conversion to C2 products: Catalysts design, market perspectives and techno-economic aspects. Renewable and Sustainable Energy Reviews. 2022 Jun 1;161:112329.
  32. Linnemann J, Kanokkanchana K, Tschulik K. Design Strategies for Electrocatalysts from an Electrochemist’s Perspective. ACS Catal. 2021 May 7;11(9):5318–46.
  33. Ojelade OA, Zaman SF, Ni BJ. Green ammonia production technologies: A review of practical progress. J Environ Manage. 2023 Sep 15;342:118348.
  34. Collado L, Herrero A, de la Peña O’Shea VA. From Conventional to Emerging Ammonia Production Technologies. 2025;713–57.
  35. Gabrielli P, Rosa L, Gazzani M, Meys R, Bardow A, Mazzotti M, et al. Net-zero emissions chemical industry in a world of limited resources. One Earth. 2023 Jun 16;6(6):682–704.
  36. Bähr A, Moon GH, Tüysüz H. Nitrogen-Doped Mesostructured Carbon-Supported Metallic Cobalt Nanoparticles for Oxygen Evolution Reaction. ACS Appl Energy Mater. 2019 Sep 23 ;2(9):6672–80.
  37. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, Dubois DL, Dupuis M, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev. 2013 Aug 14;113(8):6621–58.
  38. Wu T, Melander MM, Honkala K. Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction. ACS Catal. 2022 Feb 18;12(4):2505–12.
  39. Dhanda N, Panday YK, Kumar S. Recent advances in the electrochemical production of hydrogen peroxide. Electrochim Acta. 2024 Mar 20;481:143872.
  40. Duan Y, Sedlak DL. Electrochemical Hydrogen Peroxide Generation and Activation Using a Dual-Cathode Flow-Through Treatment System: Enhanced Selectivity for Contaminant Removal by Electrostatic Repulsion. Environ Sci Technol. 2024 Aug 6;58(31):14042–51.
  41. Shahid-ul-Islam, Butola BS. Advanced functional textiles and polymers. Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications. 2019 Jan 1;1–439.
  42. Lim JS, Kim JH, Woo J, Baek DS, Ihm K, Shin TJ, et al. Designing highly active nanoporous carbon H2O2 production electrocatalysts through active site identification. Chem. 2021 Nov 11;7(11):3114–30.
  43. Kim JH, Kim YT, Joo SH. Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms. Curr Opin Electrochem. 2020 Jun 1;21:109–16.
  44. Chen H, Chen R, Liu S, Zhou Y, Chen X, Cai J, et al. Efficient H2O2 Synthesis Through a Two-Electron Oxygen Reduction Reaction by Electrocatalysts. Chempluschem. 2024 Nov 1;89(11):e202400422.
  45. Yu A, Liu S, Yang Y. Recent advances in electrosynthesis of H2O2via two-electron oxygen reduction reaction. Chemical Communications. 2024 May 14;60(40):5232–44.
  46. Dan M, Zhong R, Hu S, Wu H, Zhou Y, Liu ZQ. Strategies and challenges on selective electrochemical hydrogen peroxide production: Catalyst and reaction medium design. Chem Catalysis. 2022 Aug 18;2(8):1919–60.
  47. Siahrostami S. H2O2 electrosynthesis and emerging applications, challenges, and opportunities: A computational perspective. Chem Catalysis. 2023 Mar 16;3(3):100568.
  48. Huang X, Song M, Zhang J, Shen T, Luo G, Wang D. Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production. Nanomicro Lett. 2023 Dec 1;15(1).
  49. Sajna MS, Zavahir S, Popelka A, Kasak P, Al-Sharshani A, Onwusogh U, et al. Electrochemical system design for CO2 conversion: A comprehensive review. J Environ Chem Eng. 2023 Oct 1;11(5):110467.
  50. He R, Xu N, Hasan IM ul, Peng L, Li L, Huang H, et al. Advances in electrolyzer design and development for electrochemical CO2 reduction. EcoMat. 2023 Jul 1;5(7):e12346.