By: Gizachew Diga Milki
Associate Professor, Department of Physics, Jimma University, Jimma, Ethiopia
In the contemporary world, scientists, technologists, and medical professionals are able to transform the knowledge of nanotechnology to medical treatment. They have been struggling to eradicate or reduce the risk effects of epidemic disease from the world. Such epidemic disease is challenging due to their vast replication, regeneration, hereditary case, genetic variations, and passages through genetic matter. For this reason, this research is focused on the biomedical application of ZnxFe2–xO3 nanoparticles (NPs) particularly for the treatment of cancer, Alzheimer, diabetes, and related infections disease. In the nanotechnology era, magnetic NPs play a dramatic role in detecting, diagnosis, and medical treatment. In this research, the prominent role of ZnxFe2–xO3 NPs is assessed for biomedical application in comparison to therapeutic, genome editing (CRISPR Cas-9). In particular the use of ZnxFe2–xO3 nanostructures in various therapeutic techniques, DNA nanotechnology, magnetic resonance imaging, and drug delivery system is discussed. Moreover, the impacts of ZnxFe2–xO3 NPs are discussed for the treatment of infectious disease particularly cancer. Hence, a systematic study is made by pinpointing the detection methods, causative agents, transmission path line, and treatment mechanisms. Here, emphasis is given to the role of magnetic ZnxFe2–xO3 nanoparticle in the application in the treatment of cancer and infectious disease.
Key words: Nanotechnology era, magnetic nanoparticles, regenerative medicine, genome editing, infectious disease.
Citation:
Refrences:
1. Anne L. Clunan, Roselyn Hsueh, Margaret E. Kosal, and Ian McManus. Nanotechnology in globalized world: Strategic assesement of an emerging Technology.2014 pg no. 1-92
Link: https://www.files.ethz.ch/isn/186025/http___www.hsdl.org__view%26did%3
D756947.pdf
2. Carofiglio M, Barui S, Cauda V, Laurent M. Doped zinc oxide nanoparticles: Synthesis, characterization and potential use of nanomedicine. Appl Sci. 2020;10:5194. doi: 10.3390/app10155194.
3. Li X, Wei Z, Lv H, Wu L, Cui Y, Yao H, et al. Iron oxide nanoparticles promote the migration of Mesenchymal stem cells to injury sites. Int J Nanomedicine. 2019;14:573–589. doi: 10.2147/IJN.S184920.
4. Wang Q, Chen B, Cao M, Sun J, Wu H, Zhao P, et al. Response of mapk pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials. 2016;86:11–20. doi: 10.1016/j.biomaterials.2016.02.004.
5. Sebastian P. Schwaminger et al. Iron oxide nanoparticles: multiwall carbon nanotube composite materials for batch or chromatographic biomolecules separation. Nanoscale Res Lett. 2021;16(1):30. doi: 10.1186/s11671-021-03491-5.
6. Zhang W, Zuo XD, Wu CW. Synthesis and magnetic properties of carbon nanotube – iron oxide nanoparticles composites for hyperthermia. A review. Rev Adv Mat Sci. 2015;40:165–176.
7. Gran R. Overview: Brain tumor diagnosis and management. J Neurol Neurosurg Psychiatry. 2004;75:18–23. doi: 10.1136/jnnp.2004.040360.
8. Kori S. An overview: Several causes of breast cancer. Epidemol Int J. 2018; 2(1):000107.
9. UK’s breast cancer charity, what cause breast cancer. 6th edition. 2021.
10. Admoun C, Mayrovitz HN. The etiology of breast cancer. In: Mayrovitz HN. editor. Breast Cancer. Brisbane (AU) 2022. pp 21–30. doi: 10.36255/exon-publications-breast-cancer-etiology.
11. Łukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanisławek A. Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers (Basel). 2021;13(17):4287. doi: 10.3390/cancers13174287.
12. American Cancer Society. Ovarian cancer causes, risk factors, and prevention. Cancer Org. 2018;1.800.227.2345.
13. Budiana ING, Angelina M, Pemayun TGA. Ovarian cancer: Pathogenesis and current recommendations for prophylactic surgery. J Turk Ger Gynecol Assoc. 2019;20(1):47–54. doi: 10.4274/jtgga.galenos.2018.2018.0119.
14. Kesheh MM, Barazandeh M, Kaffashi A, Shahkarami MK, Nadji SA. Genetic diversity of HPV 16 and HPV 18 based on partial long control region in Iranian women. Can J Infect Dis Med Microbiol. 2022. doi: 10.1155/2022/4759871.
15. American Cancer Society. Lung cancer causes, risk factors, and prevention. Cancer. Org. 2019;1.800.227.2345.
16. Rachael Z. Stoltenberg-Solomon et al. Helicobacter pylori seropositivity as a risk factor for pancreatic cancer. JNCI. 2001;93(12):937–941.
17. Wroblewski LE, Peek Jr RM, Wilson KT. Helicobacter pyloriand gastric cancer: Factors that modulate disease risk. Clin Microbiol Rev. 2010; 23(4): 713–739. doi: 10.1128/CMR.00011-10.
18. Risch HA. Pancreatic cancer: Helicobacter pylori colonization, N-nitrosamine exposures, and ABO blood group. Mol Carcinog. 2012;51(1):109–118. doi: 10.1002/mc.20826.
19. Gupta AK, Bharadwaj M, Mehrotra R. Skin cancer concerns in people of color: Risk factors and prevention. Asian Pac J Cancer Prev. 2016;17(12):5257–5264. doi: 10.22034/APJCP.2016.17.12.5257.
20. Armstrong BK, Kricker A. How much melanoma is caused by sun exposure? Melanoma Res. 1993;3(6):395–401. doi: 10.1097/00008390-199311000-00002.
21. Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci. 2018;17(12):1816–1841. doi: 10.1039/c7pp00395a..
22. Shanmugam M, Kavitha K. Anticarcinogenic and antilipid per oxidative effects of Tephrosia purpurea (Linn.) Pers. in 7, 12-dimethylbenz (a) anthracene (DMBA) induced hamster buccal pouch carcinoma. Indian J Pharamacol. 2006;38(3):185–189. doi: 10.4103/0253-7613.25805.
23. Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol. 2017;11:240–253. doi: 10.1016/j.redox.2016.12.011.
24. Yalcin S. Biological effects of electromagnetic fields. Afr J Biotechnol. 2012;11(17):3933–3941. doi: 10.5897/AJB11.3308.
25. Barnes FS, Greenebaumg B. Hand Books of Biological Effects of Electromagnetic Field. Taylors & Francis; 2006.
26. Godlewski MM , Kaszewski J, Kielbik P, Olszewski J, Lipinski W, Slonska-Zielonka A, et al. New generation of oxide-based nanoparticles for the applications in early cancer detection and diagnostics. Nanotech Rev. 2020;9:274–302. doi: 10.1515/ntrev-2020-0022.
27. Mustafa M, Azizi J, IIIzam EL, Azizan N. Lung cancer: Risk factors, management, and prognosis. IOSR-JDMS. 2016;15(10):94–101. doi: 10.9790/0853-15100494101.
28. de Oliveria Andrade LJ, D’Oliveira Junior A, Melo RC, De Souza EC, Silva CAC, Paraná R. Association between hepatitis C and hepatocellular carcinoma. J Glob Infect Dis. 2009;1(1):33–37. doi: 10.4103/0974-777X.52979.
29. Shen Q, Sahin AA, Hess KR, Suki D, Aldape KD, Sawaya R, et al. Breast cancer with brain metastases: Clinicopathologic features, survival, and paired biomarker analysis. Oncologist.2015;20(5):466–473. doi: 10.1634/theoncologist.2014-0107.
30. Young LS, Dawson CW. Epstein–Barr virus and nasopharyngeal carcinoma. Chin J Cancer. 2014; 33(12):581–590. doi: 10.5732/cjc.014.10197.
31. Pengyuan Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Nat Sci Rev. 2014;1(3):396–412. doi: 10.1093/nsr/nwu038.
32. Ahmed HG, Bensumaidea SH, Alshammari FD, Alenazi FSH, ALmutlaq BA, Alturkstani MZ. Prevalence of human papillomavirus subtypes 16 and 18 among Yemeni patients with cervical cancer. Asian Pasc J Cancer Prev. 2017;18(6):1543–1548. doi: 10.22034/APJCP.2017.18.6.1543.
33. Mesri EA, Cesarman E, Boshoff C. Kaposi’s sarcoma herpes virus/ Human herpesvirus-8 (KSHV/HHV8), and the on cogenesis of Kaposi’s sarcoma. Nat Rev Cancer. 2010;10(10):707–719. doi: 10.1038/nrc2888.
34. Samimi M, Touzé A. Markel cell carcinoma: The first human cancer shown to be associated with polynomavirus. Pressed Med. 2014;43(12 Pt 2):e405–e411. doi: 10.1016/j.lpm.2014.09.008.
35. Giam CZ, Semmes OJ. HTLV-1 infection and adult T-cell leukemia/ lymphoma-A tale of two proteins: Tax and HBZ. Viruses. 2016;8(6):161. doi: 10.3390/v8060161.
36. Kannian P, Green PL. Human T lymphotropic virus type 1 (HTLV-1): Molecular biology and oncogenesis. Viruses. 2010;2(9):2037–2077. doi: 10.3390/v2092037.
37. Axley P, Ahmed Z, Ravi S, Singal AK. Hepatitis C virus and hepatocellular carcinoma: A narrative Review. J. Clin Transl Hepatol. 2018;6(1):79–84. doi: 10.14218/JCTH.2017.00067.
38. Tambussi G, Repetto L, Torri V, Saracco A, Moresco L, Antinori A, et al. Epidemic HIV-related Kaposi’s sarcoma: A retrospective analysis and validation of TIS staging. Ann Oncol. 1995;6(4):383–387. doi: 10.1093/oxfordjournals.annonc.a059188.
39. Karakas Y, Aksoy S, Gullu HI. Kaposi’s sarcoma epidemiology, risk factors, staging and treatment. An overview. Acta Oncologica Turcia. 2017;50(2):148–159. doi: 10.5505/aot.2017.59023.
40. Wang L, Wang N, Zhang W, Cheng, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7:48. doi: 10.1038/s41392-022-00904-4.
41. Gordon SC, Moonka D, Brown KA, Rogers C, Huang MAY, Bhatt N, et al. Risk for renal cell carcinoma in chronic hepatitis C infection. Cancer Epidemiol Biomarkers Prev. 2010;19(4):1066–1073. doi: 10.1158/1055-9965.EPI-09-1275.
42. Hua S, Wu S. Advances and challenges in nanomedicine. Front Pharmacol. 2018;9:1397. doi: 10.3389/fphar.2018.01397.
43. Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, et al. Silver nanomaterials for wound dressing applications. Pharm. 2020;12(9):821. doi: 10.3390/pharmaceutics12090821.
44. Dash S, Das T, Patel P, Panda PK, Suar M, Verma SK. Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology. 2022;20(1):393. doi: 10.1186/s12951-022-01595-3.
45. Zhao L, Xing Y, Wang R, Yu F, Yu F. Self-assembled nanomaterials for enhanced phototherapy of cancer. ACS Appl Bio Mater. 2020;3(1):86–106. doi: 10.1021/acsabm.9b00843.
46. Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, et al. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine. 2008;3(3):311–321. doi: 10.2147/ijn.s2824.
47. Ciofani G, Menciassi A (Eds.): Piezoelectric Nanomaterials for Biomedical Appl., nanomedicine. 2012:213–238.
48. Song Y, Leonard SW, Traber MG, Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr. 2009;139(9):1626–1631. doi: 10.3945/jn. 109. 106369.
49. Wu J, Tang D. The effect and related mechanism of action of astragalus compatible with curcumin against colon cancer metastasis in mice 2022. Gastroenterol Res Pract. 2022. doi: 10.1155/2022/9578307.
50. Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018:2018:1062562. doi: 10.1155/2018/1062562.
51. Yoon J, Chun M, Lee S, Kim B. Effect of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor: Controlled trial. Am J Phys Med Rehabil. 2015;94(6):449–459. doi: 10.1097/PHM.0000000000000192..
52. Yan J, Zhan X, Zhang Z, Chen K, Wang M, Sun Y, et al. Tetrahedral DNA nanostructures for effective treatment of cancer: Advances and prospects. J Nanobiotechnol. 2021;19(1):412. doi: 10.1186/s12951-021-01164-0.
53. Barman NC, Khan NM, Islam M, Nain Z, Roy RK, Haque A, et al. CRISPR Cas-9: A promising genome editing therapeutic tool for Alzheimer’s disease; A narrative review. Neurol Ther. 2020;9(2):419–434. doi: 10.1007/s40120-020-00218-z.
54. Akram F, Ikram Ul Haq, Ahmed Z, Khan H, Ali MS. CRISPR-Cas 9; A promising therapeutic tool for cancer therapy. Protein Pept Lett. 2020;27(10):931–944. doi: 10.2174/0929866527666200407112432.
55. Barma NC et al. CRISPR-Cas9: A promising genome editing therapeutic tool for Alzheimer’s disease. A narrative review. Neurol Ther. 2020;9(2):419–434. doi: 10.1007/s40120-020-00218-z.
56. Khan MNM, Islam KK, Ashraf A, Barman NC. A review on genome editing by CRISPR Cas-9, for cancer treatment. WCRJ. 2020;7:e1510. doi: 10.32113/wcrj_20203_1510.
57. Lage MM, Serra PP, Menendez P, Ruiz RT, Perales SR. CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines. 2018;6(4):105. doi: 10.3390/biomedicines6040105.
58. Thom CS, Dickson CF, Gell DA, Weiss MJ. Hemoglobin variants: Biochemical properties and clinical correlates. Cold Spring Harb Perspect Med. 2013;3(3):a011858. doi: 10.1101/cshperspect.a011858.
59. WHO. Hemoglobin concentrations for the diagnosis of anemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, World Health Organization. 2011; (WHO/NMH/NHD/MNM/11.1)
60. Ramirez-Valles EG, Rodríguez-Pulido A, Barraza-Salas M, Martínez-Velis I, Meneses-Morales I, Ayala-García VM, et al. A quest for new cancer diagnosis, prognosis and prediction biomarkers and their use in biosensors development. Biomarkers. 2020;19:1–17.
61. Kantidze OL, Gurova KV, Studitsky VM, Razin SV. The 3D genome as a target for anticancer therapy, Trends Mol Med. 2020;26(2):141–149. doi: 10.1016/j.molmed.2019.09.011.
62. Kulasingam V, Diamonds EP Proteomic and genomic technologies for biomarker discovery. Clin Proteom. 2006;2:5–11.
63. American Cancer Society. Cancer facts & figure. 2018;(500818). Rev. 6/18. 28–71.
64. Nerha K, Singh J. From genomics to post genomics. BINF. 2007; 88–97.
65. Zhang Q, Austin RH. Physics of cancer: The impact of heterogeneity. Annu Rev Condens Matter Phys. 2012;3:363–382. doi: 10.1146/annurev-conmatphys-020911-125109.
66. Seeman CN, Sleiman HF. DNA nanotechnology. Nat Rev Mater. 2017;3:170–681.
67. Michor F, Liphardt J, Ferrari M, Widom J. What does physics have to do with cancer? Nat Rev Cancer. 2011;11(9):657–670. doi: 10.1038/nrc3092.
68. Singh NA. Nanotechnology innovations, industrial applications, and patents. Environ Chem Lett. 2017;15:185–191. doi: 10.1007/s10311-017-0612-8.
69. Alvazer GS. Synthesis, characterization and applications of iron oxide nanoparticles. J Chem Mater. 2004:44–67.
70. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492.
71. Schmidt I, Thor J, Davidson T, Nilsson F, Carlsson C. The national program on standardized cancer care pathways in Sweden: Observations and findings half way through. Health Policy. 2018;122(9):945–948. doi: 10.1016/j.healthpol.2018.07.012.
72. Kalogiannis DP. Nanotechnology in emerging liquid biopsy applications. Nano Converg. 2021;8:13. doi: 10.1186/s40580-021-00263-w.
73. Bernstein EF, Sarkas HW, Boland P. Iron oxide in novel skin care formulation attenuates blue light for enhanced protection against skin damage. J Cosment Dermatology. 2021;20(2):532–537. doi: 10.1111/jocd.13803.
74. Redig AJ, McAllister SS. Breast cancer as a systemic disease: A view of metastasis. J Internal Medicine. 2013;274(2):113–126. doi: 10.1111/joim.12084.
75. Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neurosci. 2017;18:51. doi: 10.1186/s12868-017-0369-9.
76. Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, et al. An up-to-date review of natural nanoparticles for cancer management. Pharmaceutics. 2022;14(1):18. doi: 10.3390/pharmaceutics14010018.
77. Yu-Feng T, Shujun H, Yan S, Liang-Mo M. Oxide magnetic semiconductors: Materials, properties, & devices, chin. Phys B. 2013;22(8):088505. doi: 10.1088/1674-1056/22/8/088505.
78. Marand ZR, Farimani MHR, Shahtahmasebi N. Study of magnetic, structural, and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Nanomed J. 2014;1(4):238–247. doi: 10.7508/nmj.2015.04.004.
79. Dervish M, Nasrabadi N, Fotovat F, Khosravi S, Khatami M, Jamali S, et al. Biosynthesis of Zn-doped CuFe2O4nanoparticles and their cytotoxicity activity. Sci Rep. 2022;12(1):9442. doi: 10.1038/s41598-022-13692-2.
80. Guo T, Lin M, Huang J, Zhou C, Tian W, Yu H, et al. The recent advances of magnetic nanoparticles in medicine. J Nanomater. 2018;8:7805147. doi: 10.1155/2018/7805147.
81. Ventola CL. The nanomedicine revolution: Part 1: Emerging concepts. P T. 2012;37(9):512–525.
82. Yan L, Zhang S, Chen P, Liu H, Yin H, Li H. Magneto tactic bacteria, magnetosomes and their application. Microbial Res. 2012;167(9):507–519. doi: 10.1016/j.micres.2012.04.002.
83. Araujo ACV, Abreu F, Silva KT, Bazylinski DA, Lins U. Magneto tactic bacteria as potential sources of byproducts. Mar Drugs. 2015;13(1):389–430. doi: 10.3390/md13010389.
84. Malekie S, Rajabi A. Study on Fe3O4 magnetic nanoparticles size effect on temperature distribution of tumor in hyperthermia: A finite element method. Int J Nanoscience Nanotechnol. 2020;16(3):181–188.
85. Thakur P, Mathpal MC, Swart HC. Optical behavior of ferrite nanoparticles and thin films. In: Ferrite Nanostructured Magnetic Materials Technologies and Applications. Wood Head Publishing Series in Electronic and Optical Materials. 2023;1:557–574. doi: 10.1016/B978-0-12-823717-5.00022-X.
86. Reaz M, Haque A, Cornelison DM, Wanekaya A. Magneto-luminescent zinc/iron oxide core-shell nanoparticles with tunable magnetic properties. Physica E Low Dimens Syst Nanostruct 2020;123:114090. doi: 10.1016/j.physe.2020.114090.
87. Mona LP, Songca S, Ajibade PA. Synthesis and encapsulation of iron oxide nanorodes for application in magnetic hyperthermia and photo thermal therapy. Nanotechnol Rev. 2022;11(1):176–190. doi: 10.1515/ntrev-2022-0011.
88. Joseph JA, Nair SB, John SS, Remillard SK, Shaji S, Philip RR. Zinc-doped iron oxide nanostructures for enhanced photocatalytic and antimicrobial applications. Journal of Applied Electrochemistry. 2021 Mar;51:521-38.
89. Virlan MJ, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic nanomaterials and their applications in the treatment of oral diseases. Molecules. 2016 Feb 9;21(2):207.
90. Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. International journal of molecular sciences. 2011 Jun 7;12(6):3705-22.