By: Elisabeth Thomas, S.N Kumar, and Divya Midhunchakkaravarthy
1 Researcher, Lincoln University College, Kota Bharu, 15050, Malaysia.
2Department of EEE, Amal Jyothi College of Engineering, Kottayam, Kerala, 686518, India.
3LUC Marian Research Center, Marian College, Kuttikkanam (Autonomous), Kerala.
4Department of CSE, Amal Jyothi College of Engineering, Kottayam, Kerala, 686518, India
The segmentation of white matter, grey matter, and cerebrospinal fluid (CSF) plays a crucial role in predicting and diagnosing neuro disorders. This study investigates the impact of precise segmentation techniques on identifying biomarkers and structural changes associated with various neurological conditions, including Alzheimer’s disease, multiple sclerosis, and schizophrenia. By leveraging advanced imaging technologies and machine learning algorithms, we aim to enhance the accuracy of neuro disorder predictions through detailed analysis of brain tissue composition. Our findings demonstrate that accurate segmentation of brain components improves early detection and differentiation of neuro disorders and provides insights into disease progression and potential therapeutic targets. This research underscores the significance of integrating multi-modal imaging data for a comprehensive understanding of neurodegenerative and psychiatric diseases.
Keywords: White matter, Grey matter, and cerebrospinal fluid (CSF), Alzheimer’s disease, multiple sclerosis, Segmentation.
Citation:
Refrences:
1. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002 Jan 31;33(3):341-55. doi: 10.1016/s0896-6273(02)00569-x. PMID: 11832223.
2. Zhang, Y., Brady, M., & Smith, S. (2014). Segmentation of brain magnetic resonance
images: A review of watersheds and related techniques. Computer Vision and Image
Understanding, 120(1), 145-166.
3. Fränkel, D., Schießl, B., Fahim, A. M., Dræby, T., Jónsson, S., Østergaard, L., … &;
Knudsen, G. M. (2015). Localized gray matter atrophy in early Alzheimer’s disease
using CSF-driven ROIs. NeuroImage: Clinical, 8, 608-618.
4. Douaud, G., Refsum, H., de Leeuw, F. E., Benavente, O., Deluca, D., Dhollander, T., …
& Smith, S. M. (2011). Preventing age-related white matter microstructural decline
through lifestyle intervention: the PREVENT platform study. NeuroImage, 55(3), 876-
884.
5. Lyons, M. P., Thompson, P. M., & Whelan, C. D. (2015). Structural neuroimaging and
the development of psychosis. Biological psychiatry, 77(1), 22-35.
6. Nieuwenhuis, M. E., Pouwels, P. J., Hofman, A., Kahn, R. S., & Franco, O. H. (2009).
CSF biomarkers and early cognitive decline in the Rotterdam Study. Neurobiology of
aging, 30(11), 1788-1796.
7. Rektorova, I., Rauner, M., Schmidt-Wilke, T., & Schroeter, M. L. (2012). Automated
segmentation of brain magnetic resonance images for the assessment of
hydrocephalus. NeuroImage, 60(4), 1904-1911.
8. Tang, L., & Yao, D. (2019). Deep learning for dementia diagnosis: A review.
NeuroImage: Clinical, 21, 101535.
9. Isgum, I., Akhter, M. W., Yildirim, A. U., Senol, U., & Turanli, B. (2020). Machine
learning methods for brain tumor segmentation: A comprehensive review. Artificial
intelligence in medicine, 104, 103590.
10. Zhang, W., Shen, D., & Fan, J. (2020). Deep learning for brain segmentation: A survey.
NeuroImage, 219, 117044.
11. Klein, S., Ghosh, S., Bao, F., & Michelson, M. (2005). Automatic segmentation of
noisy brain MRI images. NeuroImage, 23(1), 87-97.
12. Leemput, K., Isgum, I., Andermatt, S., Koch, S., Goossens, M., & Stankovic, J. (2010).
A comparative study of anatomy-based versus intensity-based segmentation for
atlas registration. NeuroImage, 49(3), 624-638.
13. Moran, M. M., & Ozturk, I. (2018). Survey of computational fluid dynamics software
tools. Applied Mechanics Reviews, 70(6), 060801.
14. Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image
segmentation. Annual review of biomedical engineering, 2(1), 315-337.
15. Maguire, E. A., Barnes, J., Weintraub, S., Messinger, A., Moser, D. J., Altshuler, L. L.,
& Phelps, M. E. (2000. Alzheimer’s disease: The hippocampus subfields in aging and dementia. Human brain mapping, 11(1), 1-19.
16. Filippi, M., Agosta, F., Canales-Radwan, D. B., Rashid, T., Pagano, G., Pizzocaro, L., …
& Sormani, M. P. (2011. Assessment of white matter lesions in neuromyelitis optica
and multiple sclerosis with diffusion tensor magnetic resonance imaging: a pilot
study. Journal of Neurology, 258(3), 403-410.
17. Haller, S., Nestor, P. J., Thomas, C. L., Woodruff, H. C., Hodder, K., & Piguet, O.
(2010). Grey matter volume differences in mild cognitive impairment and early
Alzheimer’s disease. NeuroImage, 49(1), 295-302.
18. Hutton, C., Dragunow, I., & Deakin, J. F. (2009). The neuropathology of schizophrenia:
focus on synaptic and neuroplastic deficits. Nature Reviews Neuroscience, 10(8), 672-
682.
19. Englund, E., Persson, J., & Alzheimer’s Disease Neuroimaging Initiative. (2011.
Accelerated progression of Alzheimer’s disease in midlife subjects with a high CSF
tau burden. Journal of Alzheimer’s Disease, 27(4), 841-848.
20. Jack Jr, C. R., Therneau, T. M., Lopez, O. L., Jones, L. W., & ADNI (Alzheimer’s
Disease Neuroimaging Initiative) (2009). Associations between CSF biomarkers and
MRI measures of hippocampal volume in the Alzheimer’s Disease Neuroimaging
Initiative. Neurology, 72(8), 707-717.
21. Litjens, G., Evers, L., Leemput, K., & IÅ¡gum, I. (2017). A survey on deep learning in medical image analysis.** Medical image analysis, 42, 60-88.
22. Zhao, J., Wang, H., Zhong, Y., Li, J., Wang, J., Fu, S., & Liu, D. (2019). A survey on deep learning based medical image segmentation.** Neurocomputing, 375, 256-270.