By: Haydar U. Zaman and Md. Abu Sayed
1 Assist. Prof., Department of Physics, National University of Bangladesh and Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, P.O. Box-3787, Savar, Dhaka, Bangladesh
2 Assist. Prof., Department of Chemistry, National University College of Bangladesh
Nanoparticles and nanocomposites find widespread uses in a variety of fields, such as building materials, architecture, optics, food packaging, optoelectronics, semiconductors, medicine, textiles, cosmetics, and catalysis. Compared to their microparticle cousins, polymeric nanocomposites-a unique family of materials-perform better because they blend organic polymers with inorganic nanoparticles. As a result, they ought to improve the domain of engineering applications. Inorganic nanoparticles can significantly alter the properties of a polymer matrix. Flexible polymer composites augmented with nanoparticles, like nano-zinc oxide and nano-titanium dioxide, provide new design opportunities with enhanced mechanical and chemical properties. The mechanical, morphological, and thermal properties of polypropylene composites filled with nano-titanium dioxide and nano-zinc oxide were investigated in this work. The weight percentage of nanoparticles in the matrix ranged from 1 to 5. For improved surface adherence and fine dispersion, nanoparticles were coated with silane, and maleic anhydride grafted styren-ethylene-butylene styrene, respectively, prior to melting mixing. To investigate the effects of modified and unmodified nanoparticles at different concentrations on the mechanical, morphological, and thermal properties, polypropylene/nanoparticle nanocomposites were made using a twin-screw extruder and a heat press. All tensile parameters, such as yield strength, tensile strength, and tensile modulus, have increased in nanoparticles due to their rigid structure, whereas impact strength and elongation at break have reduced. As a result, even though nano-titanium dioxide is harder than nano-zinc oxide, nanocomposites including it showed more elongation than those containing the latter. The polypropylene/nano-titanium dioxide nanocomposite exhibited greater productivity due to the presence of silane, as compared to maleic anhydride styrene-ethylene-butylene. However, compared to silane-modified nano-zinc oxide nanocomposites, the tensile properties of nano-titanium dioxide nanocomposites were greater. This time, polypropylene has been used to induce the more refined structure of nano-titanium dioxide, which guarantees the result of decreased elongation at break. This is probably because silane and nano-titanium dioxide are more compatible. The melt temperature, crystallization temperature, and crystallinity level were also ascertained by thermal analysis.
Keywords: Nanocomposites, polypropylene, nano-titanium dioxide, nano-zinc oxide, morphology, mechanical properties.
Citation:
Refrences:
1. Aydemir D, Gulsen UZ, Gumuş H, Yildiz S, Gumuş S, Bardak T, et al. Nanocomposites of polypropylene/nano titanium dioxide: effect of loading rates of nano titanium dioxide. Mater Sci. 2016;22(3):364–369. doi:10.5755/j01.ms.22.3.8217.
2. Tang J, Wang Y, Liu H, Belfiore LA. Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polym. 2004;45(7):2081–2091. doi:10.1016/j.polymer.2003.11.046.
3. Wang H, Xian G, Li H. Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Compos Part A Appl Sci Manuf. 2015;76:172–180. doi:10.1016/j.compositesa.2015.05.027.
4. Zaman HU, Khan RA. Organically modified peanut shell flour-reinforced polypropylene nanocomposites: Effect of fiber surface treatment on basic properties. Int J Anal Appl Chem. 2022;8(2):19–30.
5. Zaman HU, Khan RA. A Review on polymer nanocomposites and its applications. Int J Adv Sci Eng. 2023;9(3):3006–3023. doi:10.29294/IJASE.9.3.2023.3006-3023.
6. Zhu J, Wilkie CA. Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int. 2000;49(10):1158–1163. doi:10.1002/1097-0126(200010)49:10<1158::AID-PI505>3.0.CO;2-G.
7. Selvakumar V, Manoharan N. Mechanical and morphological properties of PP/MWNT/MMT hybrid nanocomposites. Int J Eng Technol. 2014;6(5):2351–2356.
8. Montazer M, Morshedi S. Photo bleaching of wool using nano TiO2 under daylight irradiation. J Ind Eng Chem. 2014;20(1):83–90. doi:10.1016/j.jiec.2013.04.023.
9. Zhou J, Qiu K, et al. The surface modification of ZnOw and its effect on the mechanical properties of filled polypropylene composites. J Compos Mater. 2005;39(21):1931–1941. doi:10.1177/0021998305051809.
10. Zaman HU, Khan RA. Investigation into ultra-high molecular weight polyethylene/modified nano-zinc oxide nanocomposites. Int J Adv Sci Eng. 2023;9(3):2848–2856. doi:10.29294/IJASE.9.3.2023.2848-2856.
11. Zaman HU, Khan RA. Effect of coupling agent on organoclay dispersion in polyethylene/organoclay nanocomposites for packaging industry. Int J Nanobiotechnol. 2023;8:1–11.
12. Kruenate J, Tongpool R, et al. Optical and mechanical properties of polypropylene modified by metal oxides. Surf Interf Analy. 2004;36(8):1044–1047. doi:10.1002/sia.1833.
13. Gündoğan K, Öztürk DK. Investigation of properties ZnO, CuO, and TiO2 reinforced polypropylene composites. NIScPR. 2021;80(5)414–419.
14. Lin OH, Akil HM, Mahmud S. Effect of particle morphology on the properties of polypropylene/nanometric zinc oxide (pp/nanozno) composites. Adv Compos Lett. 2009;18(3):09. doi:10.1177/096369350901800302.
15. Zaman HU, Khan RA. Mechanical and thermal properties of extruded thermoplastic polyester elastomer/TiO2 nano-composites: Effect of surface modification. Adv J Sci Eng. 2022;3(2):136–145. doi:10.22034/advjse22032136.
16. Chandramouleeswaran S, Mhaske ST, Kathe AA, Varadarajan PV, Prasad V, Vigneshwaran N. Functional behaviour of polypropylene/ZnO–soluble starch nanocomposites. Nanotechnol. 2007;18(38):385702. doi:10.1088/0957-4484/18/38/385702.
17. Zaman HU, Khan RA. Fabrication and surface modified non-woven calotropis gigantea fiber mat reinforced polypropylene composites by film stacking method. J Thin Films Coat Sci Technol Appl. 2022;9:10–21.
18. Awang M, Wan MW. Comparative studies of titanium dioxide and zinc oxide as a potential filler in polypropylene reinforced rice husk composite. IOP Conf Ser Mater Sci Eng. 2018;342:012046. doi:10.1088/1757-899X/342/1/012046.
19. Demir H, Atikler U, Balköse D, Tıhmınlıoğlu F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos Part A Appl Sci Manufact. 2006;37(3):447–456. doi:10.1016/j.compositesa.2005.05.036.
20. Zaman HU, Khan RA. Study on mechanical and physical properties of wood-plastic nanocomposites after fiber surface treatment. Int J Chem Eng Proc. 2023;8(2):34–43.
21. Hashimoto M, Takadama H, Mizuno M, Kokubo T. Mechanical properties and apatite forming ability of TiO 2 nanoparticles/high density polyethylene composite: Effect of filler content. J Mater Sci Mater Med. 2007;18:661–668. doi:10.1007/s10856-007-2317-1.
22. Kubacka A, Fernández-García M, Cerrada ML, Fernández-García M. Titanium Dioxide–Polymer Nanocomposites with Advanced Properties. In: Cioffi N, Rai M, editors. Nano-Antimicrobials. Berlin, Heidelberg: Springer; 2012. 119–149. doi:10.1007/978-3-642-24428-5_4.
23. Wacharawichanant S, Phutphongsai A. The study of morphology and mechanical properties of compatibilized polypropylene/zinc oxide composites. J Solid Mech Mater Eng. 2007;1(10):1231–1237. doi:10.1299/jmmp.1.1231.
24. Altan M, Yildirim H, Uysal A. Tensile properties of polypropylene/metal oxide nano composites. Tojsat. 2011;1(1):25–30.
25. Supaphol P, Harnsiri W, Junkasem J. Effects of calcium carbonate and its purity on crystallization and melting behavior, mechanical properties, and processability of syndiotactic polypropylene. J Appl Polym Sci. 2004;92(1):201–212. doi:10.1002/app.13432.
26. Esthappan SK, Kuttappan SK, Joseph R. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Design. 2012;37:537–542. doi:10.1016/j.matdes.2012.01.038.
27. Yang CP, Wu YJ, Liu CG. Studies on crystallizations and mechanical properties of polypropylene/nano-TiO2 composites. Adv Mater Res. 2013;690:494–498. doi:10.4028/www.scientific.net/AMR.690-693.494.
28. Selvin TP, Kuruvilla J, Sabu T. Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Mater Lett. 2004;58(3–4):281–289. doi:10.1016/S0167-577X(03)00470-1.
29. Altan M, Yildirim H. Mechanical and antibacterial properties of injection molded polypropylene/TiO2 nano-composites: Effects of surface modification. J Mater Sci Technol. 2012;28(8):686–692. doi:10.1016/S1005-0302(12)60116-9.
30. Mina MF, Seema S, Matin R, Rahaman MJ, Sarker RB, Gafur MA, et al. Improved performance of isotactic polypropylene/titanium dioxide composites: effect of processing conditions and filler content. Polym Degrad Stab. 2009;94(2):183–188. doi:10.1016/j.polymdegradstab.2008.11.006.
31. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polym. 2001;42(7):3301–3304. doi:10.1016/S0032-3861(00)00741-2.
32. Phua YJ, Chow WS, Mohd Ishak ZA. Reactive processing of maleic anhydride-grafted poly (butylene succinate) and the compatibilizing effect on poly (butylene succinate) nanocomposites. Express Polym Lett. 2013;7(4):340–354. doi:10.3144/expresspolymlett.2013.31.
33. Ishida H, Campbell S, Blackwell J. General approach to nanocomposite preparation. Chem Mater. 2000;12(5):1260–1267. doi:10.1021/cm990479y.
34. Setz S, Stricker F, Kressler J, Duschek T, Mülhaupt R. Morphology and mechanical properties of blends of isotactic or syndiotactic polypropylene with SEBS block copolymers. J Appl Polym Sci. 1996;59(7):1117–1128. doi:10.1002/(SICI)1097-4628(19960214)59:7<1117::AID-APP8>3.0.CO;2-H.
35. Rahman MT, Hoque MA, Rahman GT, Gafur MA, Khan RA, Hossain MK. Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 2019;13:102264. doi:10.1016/j.rinp.2019.102264.
36. Zaman HU, Hun PD, Khan RA, Yoon KB. Effect of surface-modified nanoparticles on the mechanical properties and crystallization behavior of PP/CaCO3 nanocomposites. J Thermoplas Compos Mater. 2013;26(8):1057–1070. doi:10.1177/089270571143335.
37. Ghazy O, Freisinger B, Lieberwith I, Landfester K. Tuning the size and morphology of P3HT/PCBM composite nanoparticles: Towards optimized water-processable organic solar cells. Nanoscale. 2020;12(44):22798–22807. doi:10.1039/D0NR05847E.
38. Chan CM, Wu J, Li JX, Cheung YK. Polypropylene/calcium carbonate nanocomposites. Polym. 2002;43(10):2981–2992. doi:10.1016/S0032-3861(02)00120-9.
39. Ma J, Zhang S, Qi Z, Li G, Hu Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. J Appl Polym Sci. 2002;83(9):1978–1985. doi:10.1002/app.10127.
40. Li Y, Wei GX, Sue HJ. Morphology and toughening mechanisms in clay-modified styrene-butadiene-styrene rubber-toughened polypropylene. J Mater Sci. 2002;37:2447–2459. doi:10.1023/A:1015471002812.
41. Bahloul W, Bounor‐Legaré V, David L, Cassagnau P. Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method. J Polym Sci Part B Polym Phys. 2010;48(11):1213–1222. doi:10.1002/polb.22012.
42. Zebarjad SM, Sajjadi SA, Tahani M, Lazzeri A. A study on thermal behaviour of HDPE/CaCO3 nanocomposites. J Achiev Mater Manuf Eng. 2006;17(1-2):173–176.
43. Garcia M, Van Vliet G, Jain SH, Schrauwen BA, Sarkissov AU, Van Zyl WE, et al. Polypropylene/SiO2 nanocomposites with improved mechanical properties. Rev Adv Mater Sci. 2005;6(2):169–175.