Innovative Approaches to Molecular Synthesis for Drug Development

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Chemical Engineering and Processing
Received Date: 08/16/2024
Acceptance Date: 09/26/2024
Published On: 2024-10-27
First Page: 9
Last Page: 14

Journal Menu

By: Rizwan Arif and Neha Sahu

1. Engineering Biology Research Consortium. What is synthetic/engineering biology? [Online]. EBRC. 2021. Available from: https://ebrc.org/what-is-synbio/.
2. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–10594. doi:10.1021/acs.chemrev.8b00728.
3. Cumbers J. Synthetic biology startups raised $2 billion in the first half of 2020 [Online]. Forbes. 2020. Available from: https://www.forbes.com/sites/johncumbers/2020/09/09/synthetic-biology-startups-raised-30-billion-in-the-first-half-of-2020/?sh=67da95201265.
4. Park SV, Yang JS, Jo H, Kang B, Oh SS, Jung GY. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv. 2019;37(8):107452. doi:10.1016/j.biotechadv.2019.107452.
5. Leavell MD, Singh AH, Kaufmann-Malaga BB. High-throughput screening for improved microbial cell factories, perspective and promise. Curr Opin Biotechnol. 2020;62:22–28. doi:10.1016/j.copbio.2019.07.002.
6. Shaw WM, Yamauchi H, Mead J, Gowers GO, Bell DJ, Öling D, et al. Engineering a model cell for rational tuning of GPCR signaling. Cell. 2019;177(3):782–796. doi:10.1016/j.cell.2019.02.023.
7. Kotopka BJ, Smolke CD. Model-driven generation of artificial yeast promoters. Nat Commun. 2020;11:2113. doi:10.1038/s41467-020-15977-4.
8. Berepiki A, Kent R, Machado LF, Dixon N. Development of high-performance whole cell biosensors aided by statistical modeling. ACS Synthetic Biol. 2020;9(3):576–589. doi:10.1021/acssynbio.9b00448.
9. Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 2020;38(7):745–765. 9. doi:10.1016/j.tibtech.2019.11.007.
10. ClinicalTrials. Safety and tolerability of SYNB1618 in healthy adult volunteers and adult subjects with phenylketonuria (PKU) [ONline]. ClinicalTrials.gov. 2021. Available from: https://clinicaltrials.gov.
11. ClinicalTrials. Efficacy, safety and tolerability of AG013 in oral mucositis compared to placebo when administered three times per day [Online]. ClinicalTrials.gov. 2021. Available from: https://clinicaltrials.gov.
12. Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019;10(1):2142. doi:10.1038/s41467-019-09848-w.
13. Carqueijeiro I, Langley C, Grzech D, Koudounas K, Papon N, O’Connor SE, et al. Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Curr Opin Biotechnol. 2020;65:17–24. doi:10.1016/j.copbio.2019.11.017.
14. Xu X, Liu Y, Du G, Ledesma-Amaro R, Liu L. Microbial chassis development for natural product biosynthesis. Trends Biotechnol. 2020;38(7):779–796. doi:10.1016/j.tibtech.2020.01.002.
15. Lundin A, Porritt MJ, Jaiswal H, Seeliger F, Johansson C, Bidar AW, et al. Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery. Nat Commun. 2020;11(1):4903. doi:10.1038/s41467-020-18548-9
16. Jakočiūnas T, Klitgaard AK, Kontou EE, Nielsen JB, Thomsen E, Romero-Suarez D, et al. Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic Syst Biotechnol. 2020;5(1):11–18. doi:10.1016/j.synbio.2020.01.004.

Abstract

The rapidly evolving field of drug development continually seeks innovative methodologies to enhance the efficiency, specificity, and scalability of molecular synthesis. This paper explores recent advancements in synthetic chemistry, focusing on techniques that have shown significant promise in addressing the challenges faced in drug discovery and development. Automated Synthesis: The advent of machine learning and artificial intelligence (AI) in synthetic chemistry has led to the development of automated synthesis platforms. These systems can optimize reaction conditions, predict synthetic routes, and accelerate the discovery of new compounds. Biocatalysis: Utilizing enzymes as catalysts offers a green and highly specific alternative to traditional chemical synthesis. Advances in enzyme engineering and directed evolution have expanded the substrate scope and improved the efficiency of biocatalytic processes, making them integral to modern drug synthesis. Photoredox Catalysis: This method harnesses light to drive chemical reactions, enabling the formation of complex molecules under mild conditions. Recent innovations in photocatalyst design and reaction optimization have significantly broadened the applicability of photoredox catalysis in drug development. Green Chemistry: Sustainable approaches to synthesis are increasingly prioritized, with a focus on reducing waste, minimizing energy consumption, and utilizing renewable resources. Innovations in green chemistry are critical to developing environmentally friendly and economically viable synthetic methods. The synthesis of drug candidates has become more sophisticated with these innovative approaches, facilitating the discovery of new therapeutics and improving the efficiency of drug development pipelines. This paper provides a comprehensive overview of these advancements, highlighting their impact on the pharmaceutical industry and future directions for research.

Loading

Citation:

How to cite this article: Rizwan Arif and Neha Sahu, Innovative Approaches to Molecular Synthesis for Drug Development. International Journal of Chemical Engineering and Processing. 2024; 10(02): 9-14p.

How to cite this URL: Rizwan Arif and Neha Sahu, Innovative Approaches to Molecular Synthesis for Drug Development. International Journal of Chemical Engineering and Processing. 2024; 10(02): 9-14p. Available from:https://journalspub.com/publication/ijocep/article=14665

Refrences:

  1. Engineering Biology Research Consortium. What is synthetic/engineering biology? [Online]. EBRC. 2021. Available from: https://ebrc.org/what-is-synbio/.
  2. Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–10594.doi:10.1021/acs.chemrev.8b00728.
  3. Cumbers J. Synthetic biology startups raised $2 billion in the first half of 2020 [Online]. Forbes. 2020. Available from: https://www.forbes.com/sites/johncumbers/2020/09/09/synthetic-biology-startups-raised-30-billion-in-the-first-half-of-2020/?sh=67da95201265.
  4. Park SV, Yang JS, Jo H, Kang B, Oh SS, Jung GY. Catalytic RNA, ribozyme, and its applications in synthetic biology. Biotechnol Adv. 2019;37(8):107452.doi:10.1016/j.biotechadv.2019.107452.
  5. Leavell MD, Singh AH, Kaufmann-Malaga BB. High-throughput screening for improved microbial cell factories, perspective and promise. Curr Opin Biotechnol. 2020;62:22–28.doi:10.1016/j.copbio.2019.07.002.
  6. Shaw WM, Yamauchi H, Mead J, Gowers GO, Bell DJ, Öling D, et al. Engineering a model cell for rational tuning of GPCR signaling. Cell. 2019;177(3):782–796.doi:10.1016/j.cell.2019.02.023.
  7. Kotopka BJ, Smolke CD. Model-driven generation of artificial yeast promoters. Nat Commun. 2020;11:2113.doi:10.1038/s41467-020-15977-4.
  8. Berepiki A, Kent R, Machado LF, Dixon N. Development of high-performance whole cell biosensors aided by statistical modeling. ACS Synthetic Biol. 2020;9(3):576–589.doi:10.1021/acssynbio.9b00448.
  9. Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends Biotechnol. 2020;38(7):745–765. doi:10.1016/j.tibtech.2019.11.007.
  10. Safety and tolerability of SYNB1618 in healthy adult volunteers and adult subjects with phenylketonuria (PKU) [ONline]. ClinicalTrials.gov. 2021. Available from: https://clinicaltrials.gov.
  11. Efficacy, safety and tolerability of AG013 in oral mucositis compared to placebo when administered three times per day [Online]. ClinicalTrials.gov. 2021. Available from: https://clinicaltrials.gov.
  12. Cravens A, Payne J, Smolke CD. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat Commun. 2019;10(1):2142.doi:10.1038/s41467-019-09848-w.
  13. Carqueijeiro I, Langley C, Grzech D, Koudounas K, Papon N, O’Connor SE, et al. Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs. Curr Opin Biotechnol. 2020;65:17–24.doi:10.1016/j.copbio.2019.11.017.
  14. Xu X, Liu Y, Du G, Ledesma-Amaro R, Liu L. Microbial chassis development for natural product biosynthesis. Trends Biotechnol. 2020;38(7):779–796.doi:10.1016/j.tibtech.2020.01.002.
  15. Lundin A, Porritt MJ, Jaiswal H, Seeliger F, Johansson C, Bidar AW, et al. Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery. Nat Commun. 2020;11(1):4903.doi:10.1038/s41467-020-18548-9
  16. Jakočiūnas T, Klitgaard AK, Kontou EE, Nielsen JB, Thomsen E, Romero-Suarez D, et al. Programmable polyketide biosynthesis platform for production of aromatic compounds in yeast. Synthetic Syst Biotechnol. 2020;5(1):11–18.doi:10.1016/j.synbio.2020.01.004.