By: Thrishna M, Kiruthika Selvi K. J., and Aniruddha Maram
1. Assistant Professor, Department of Architecture, REVA University, Bengaluru, Karnataka, India.
2. Associate Professor, Department of Architecture REVA University, Bengaluru, Karnataka, India.
3. CEO, Department of Biotechnology, Dextrose Technologies Pvt Ltd, Bengaluru, Karnataka, India.
Abstract: This research explores the integration of responsive and adaptive smart materials in modern architecture for a balance of sustainability and cultural heritage. Advanced materials, such as thermochromic glass, shape memory polymers, and phase change materials (PCMs), benefit energy efficiency and adaptability. The research will provide practical guidelines for designers to link innovation to tradition through literature reviews, advanced simulations, and community feedback. Exploring the potential of energy conservation through successful case studies where smart materials blend modern functionality with traditional design elements. Digital models demonstrate significant energy savings, while physical prototypes replicate traditional textures using modern materials that remain adaptable and culturally relevant. The research emphasizes community involvement, with local focus groups evaluating prototypes for cultural and aesthetic relevance. Surveys and data analysis focus on performance criteria, such as aesthetic satisfaction. The results suggest that preserving cultural heritage is central to customizing smart materials to enhance their applicability. The study concludes with general guidelines recommending collaboration between architects and material scientists to develop smart responsive materials that integrate innovation with tradition, fostering sustainable, culturally resonant architectural designs.
Keywords: Responsive materials, thermochromic glass, shape memory polymers, sustainability, cultural heritage, energy efficiency, modern architecture, material adaptability, architectural innovation
Citation:
Refrences:
- Ke Y, Chen J, Lin G, Zhou Y, Yin J, He C, et al. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Wiley-VCH Verlag; 2019 Oct 1. doi:10.1002/aenm.201902066.
- Hill R. Traditional paint from Papua New Guinea: Context, materials and techniques, and their implications for conservation. Conservator. 2001;25(1):49–61.
- Bulot+Collins. Thermochromic tiles of recycled HDPE clad the ‘iceberg’ diving platform by bulot+collins [Online]. Designboom | Architecture & Design Magazine. 2022.
- Yi H, Kim Y. Self-shaping building skin: Comparative environmental performance investigation of shape-memory-alloy (SMA) response and artificial-intelligence (AI) kinetic control. J Build Eng. 2021;35:102113. doi:10.1016/j.jobe.2020.102113.
- Zhuang B, Dai Z, Pang S, Xu H, Sun L, Ma F. 3D ordered macroporous VO2 thin films with an efficient thermochromic modulation capability for advanced smart windows. Adv Opt Mater. 2019;7(22):1900600. doi:10.1002/adom.201900600.
- Chang TC, Cao X, Bao SH, Ji SD, Luo HJ, Jin P. Review on thermochromic vanadium dioxide based smart coatings: from lab to commercial application. Adv Manuf. 2018;6(1):1–19. doi:10.1007/s40436-017-0209-2.
- Prasadam VP, Cameron DC, et al. Atomic layer deposition of vanadium oxides: process and application review. Elsevier Ltd; 2019. doi:10.1016/j.mtchem.2019.03.004.
- Ji Y, Mattsson A, Niklasson GA, Granqvist CG, Österlund L. Synergistic TiO2/VO2 window coating with thermochromism, enhanced luminous transmittance, and photocatalytic activity. Joule. 2019;3(10):2457–2471. doi:10.1016/j.joule.2019.06.024.
- Tällberg R, Jelle BP, Loonen R, Gao T, Hamdy M. Comparison of the energy saving potential of adaptive and controllable smart windows: A state-of-the-art review and simulation studies of thermochromic, photochromic and electrochromic technologies. Sol Energy Mater Sol Cells. 2019;200. doi:10.1016/j.solmat.2019.02.041.
- Granqvist CG, Arvizu MA, Pehlivan B, Qu HY, Wen RT, Niklasson GA. Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochim Acta. 2018;259:1170–1182. doi:10.1016/j.electacta.2017.11.169.
- Ye H, Long L, Zhang H, Zou R. The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index. Appl Energy. 2014;113:1118–1126. doi:10.1016/j.apenergy.2013.08.067.
- Yeung CP, et al. Phase separation of VO2 and SiO2 on SiO2-coated float glass yields robust thermochromic coating with unrivaled optical properties. Sol Energy Mater Sol Cells. 2021;230. doi:10.1016/j.solmat.2021.111238.
- Fiorito F, et al. Shape morphing solar shadings: A review. Elsevier Ltd; 2016. doi:10.1016/j.rser.2015.10.086.
- Mann D, et al. Comparative building energy simulation study of static and thermochromically adaptive energy-efficient glazing in various climate regions. Energies (Basel). 2020;13(11). doi:10.3390/en13112842.
- Cui Y, et al. Thermochromic VO2 for Energy-efficient Smart Windows. Boca, Raton: Cell Press; 2018. doi:10.1016/j.joule.2018.06.018.
- Aditya L, et al. A Review on Insulation Materials for Energy Conservation in Buildings. Elsevier Ltd; 2017. doi:10.1016/j.rser.2017.02.034.
- Kirimtat A, Koyunbaba BK, Chatzikonstantinou I, Sariyildiz S. Review of Simulation Modeling for Shading Devices in Buildings. Elsevier Ltd; 2016. doi:10.1016/j.rser.2015.08.020.
- Formentini M, Lenci S. An innovative building envelope (kinetic façade) with shape memory alloys used as actuators and sensors. Autom Constr. 2018;85:220–231. doi:10.1016/j.autcon.2017.10.006.
- Tsikaloudaki K, Theodosiou T, Laskos K, Bikas D. Assessing cooling energy performance of windows for residential buildings in the Mediterranean zone. Energy Convers Manag. 2012;335–343. doi:10.1016/j.enconman.2012.04.020.
- Jaber S, Ajib S. Thermal and economic windows design for different climate zones. Energy Build. 2011;43(11):3208–3215. doi:10.1016/j.enbuild.2011.08.019.
- Li SY, Niklasson GA, Granqvist CG. Thermochromic fenestration with VO2-based materials: Three challenges and how they can be met. Thin Solid Films. 2012;3823–3828. doi:10.1016/j.tsf.2011.10.053.
- Beute F, de Kort YAW. Salutogenic effects of the environment: Review of health protective effects of nature and daylight. Appl Psychol Health Well Being. 2014;6(1):67–95. doi:10.1111/aphw.12019.
- Mohamed ASY. Smart materials innovative technologies in architecture; Towards innovative design paradigm. Energy Procedia. 2017;139–154. doi: 10.1016/j.egypro.2017.05.014.
- Feist W, Schnieders J. Energy efficiency – A key to sustainable housing. Eur Phys J Spec Top. 2009;176(1):141–153. doi:10.1140/epjst/e2009-01154-y.
- Mohamed Sabry Elattar S. Smart structures and material technologies in architecture applications. 2013;8(31):1512–1521. doi:10.5897/SRE2012.0760.
- Zarzycki A, Decker M. Climate-adaptive buildings: Systems and materials. Int J Archit Comput. 2019;17(2):166–184. doi:10.1177/1478077119852707.
- Schläefer J, et al. Thermochromic VO2−SiO2 nanocomposite smart window coatings with narrow phase transition hysteresis and transition gradient width. Sol Energy Mater Sol Cells. 2019;200. doi:10.1016/j.solmat.2019.109944.
- Hutchins MG, Platzer WJ. The thermal performance of advanced glazing materials. WREC 1996.
- López M, Rubio R, MartÃn S, Croxford B, Jackson R. Active materials for adaptive architectural envelopes based on plant adaptation principles. J Facade Des Eng. 2015;3(1):27–38. doi:10.3233/fde-150026.