Thermoacoustic Properties of Ethanol-n-Hexane and 1-Propanol-n-Hexane Binary Mixtures: A Comparative Study at 298.15 K

Volume: 11 | Issue: 02 | Year 2025 | Subscription
International journal of Thermodynamics and Chemical Kinetics
Received Date: 09/04/2025
Acceptance Date: 09/12/2025
Published On: 2025-09-27
First Page:
Last Page:

Journal Menu


By: Dr. Ashish Wakulkar, Ban P. W., Shah S. A.*, and Priyanka bhukya

PROFESSOR, Dept. of Chemistry, A.N. College, Warora (M.S.) INDIA

Abstract

Using an Anton Paar DSA 5000 M instrument, measurements of density, sound velocity, and viscosity were carried out for ethanol–n-hexane and 1-propanol–n-hexane binary mixtures across mole fractions ranging from 0.1 to 0.9 at a constant temperature of 298.15 K. These binary mixtures were specifically selected to investigate the behavior of polar–nonpolar molecular interactions and how they affect the thermophysical properties of the system. The density, sound velocity, and viscosity data were accurately measured under controlled experimental conditions, ensuring high precision and reproducibility. From the measured experimental data, several important thermodynamic and acoustic parameters were calculated, including isentropic compressibility (κₛ), acoustic impedance (Z), free length (Lf), free volume (Vf), and internal pressure (πi). The analysis of these derived parameters provides valuable insights into molecular interactions within the mixtures. In particular, the isentropic compressibility and acoustic impedance are sensitive to molecular packing and interaction strength, while free volume and internal pressure reflect the molecular mobility and cohesion forces present. The variation of these parameters with changing mole fraction highlights the non-ideal behavior arising due to non-covalent interactions, such as hydrogen bonding, van der Waals forces, and dipole-induced interactions, between alcohol and n-hexane molecules. Comparative analysis between ethanol–n-hexane and 1-propanol–n-hexane systems shows how chain length and molecular structure influence the extent of interaction. The results revealed that alcohols with longer alkyl chains (1-propanol) exhibited stronger deviation from ideal mixing compared to ethanol, indicating enhanced molecular interactions. These findings contribute to a better understanding of solution thermodynamics and can be applied in fields such as chemical engineering, formulation science, and process optimization, where precise knowledge of mixture behavior is critical.

Loading

Citation:

How to cite this article: Dr. Ashish Wakulkar, Ban P. W., Shah S. A.*, and Priyanka bhukya, Thermoacoustic Properties of Ethanol-n-Hexane and 1-Propanol-n-Hexane Binary Mixtures: A Comparative Study at 298.15 K. International journal of Thermodynamics and Chemical Kinetics. 2025; 11(02): -p.

How to cite this URL: Dr. Ashish Wakulkar, Ban P. W., Shah S. A.*, and Priyanka bhukya, Thermoacoustic Properties of Ethanol-n-Hexane and 1-Propanol-n-Hexane Binary Mixtures: A Comparative Study at 298.15 K. International journal of Thermodynamics and Chemical Kinetics. 2025; 11(02): -p. Available from:https://journalspub.com/publication/ijtck/article=20967

Refrences:

  1. Djordjević, B. D., Radovic, I. R., Kijevčanin, M. Lj., Tasić, A. Ž., & Šerbanović, S. P. (2009). J. Serb. Chem. Soc., 74(5), 477–491.

  2. Dandwate, S. R., & Deshmukh, S. B. (2018). IJUP, 4(4), 196–201.

  3. Kumar, D., & Devi, P. (2014). IJRPC, 4(4), 825–828.

  4. Thennarasu, J., & Meenakshi, G. (2011). Rasayan J. Chem., 4(4), 904–909.

  5. Alisha, S. B., Nafeesabanu, S., Krishna Rao, K. S. V., Subha, M. C. S., & Chowdoji Rao, K. (2017). Indian JACS, 5(3), 142–147.

  6. Wyman, C. E., & Hinman, N. D. (1990). Appl. Biochem. Biotechnol., 24, 735–753.

  7. Pohorecky, L. A., & Brick, J. (1988). Pharmacol. Ther., 36(2–3), 335–427.

  8. Scalley, R. (2002). Am. Fam. Physician, 66(5), 807–813.

  9. Favre, H. A., & Powell, W. H. (2014). Nomenclature of Organic Chemistry (p. 61). Cambridge: Royal Society of Chemistry.

  10. Pal, A., & Gaba, R. (2008). J. Chem. Thermodyn., 40(5), 818–828.

  11. Papa, A. J. (2011). In Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.

  12. Basu, M., Samanta, T., & Das, D. (2013). J. Chem. Thermodyn., 57, 335–343.

  13. Fang, S., Zhao, C.-X., He, C.-H., Liu, J.-Q., & Sun, J.-H. (2008). J. Chem. Eng. Data, 53, 2718–2720.

  14. Natarajan, R., & Ramesh, P. (2011). J. Pure Appl. Ind. Phys., 1(4), 252–258.

  15. Ghosh, A. M., & Ramteke, J. N. (2017). Der Chem. Sin., 8(2), 291–297.

  16. Ameta, R. K., Singh, M., & Kale, R. K. (2013). J. Chem. Thermodyn., 60, 159–168.

  17. Zaoui-Djelloul-Daouadji, M., Bendiaf, L., Bahadur, I., Negadi, A., Ranjugernath, D., Ebenso, E. E., & Negadi, L. (2015). Thermochim. Acta, 611, 47–55.

  18. Wilson, W., & Bradley, D. (1964). J. Acoust. Soc. Am., 36, 333.

  19. Khattab, I. S., Bandarkar, F., Fakhree, M. A. A., & Jouyban, A. (2012). Korean J. Chem. Eng., 29(6), 812–817.

  20. Mokhtarani, B., Sharifi, A., Mortaheb, H. R., Mirzaei, M., Mafi, M., & Sadeghian, F. (2009). J. Chem. Thermodyn., 41, 1432–1438.

  21. Singh, S., Aznar, M., & Deenadayalu, N. (2013). J. Chem. Thermodyn., 57, 238–247.

  22. de Cominges, B. E., Pineiro, M. M., Mosteiro, L., Iglesias, T. P., Legido, J. L., & Paz Andrade, M. I. (2001). J. Chem. Eng. Data, 46, 1206–1210.

  23. Bolotnikov, M. F., & Neruchev, Y. A. (2003). J. Chem. Eng. Data, 48, 739–741.

  24. George, C. D., Thomas, P. M., & Joseph, C. D. (1986). Physical and Theoretical Chemistry. New Delhi: S. Chand & Co. Ltd.

  25. Grimme, S., Antony, J., Schwabe, T., & Muck-Lichtenfeld, C. (2007). Org. Biomol. Chem., 5, 741–758.

  26. Rao, C. N. R. (1973). University General Chemistry: An Introduction to Chemical Science. Chennai: Macmillan.

  27. Jahagirdar, D. V., Arbad, B. R., Mirgane, S. R., Lande, M. K., & Shankarwar, A. G. (1998). J. Mol. Liq., 75, 33–43.

  28. Rao, N. P., Ronald, & Verrall, E. (1987). Can. J. Chem., 65, 810.

  29. Raman, M. S., & Amirthaganesan, G. (2004). Indian J. Phys., 78, 1329.

  30. Povey, M. J. (1997). Ultrasonic Techniques for Fluid Characterisation. London: Academic Press.

  31. Ali, A., Nain, A. K., & Kamil, M. (1999). Thermochim. Acta, 274, 209.

  32. Ali, A., & Nain, A. K. (1997). Indian J. Pure Appl. Phys., 35, 729.

  33. Chang, R. (1987). Chemistry (3rd ed.). New York: McGraw-Hill.

  34. Ravichandran, S., & Ramanathan, K. (2008). Polym.-Plast. Technol. Eng., 47, 169–173.

  35. Awasthi, A., & Shukla, J. P. (2003). J. Mol. Liq., 41, 477.

  36. Mehra, N., & Sanjnami, H. (2000). Indian J. Pure Appl. Phys., 38, 760.

  37. Palani, R., & Balkrishnan, S. (2010). Arch. Phys. Res., 1, 111–118.

  38. Jacobson, B. (1952). Acta Chem. Scand., 6, 1485.

  39. Eyring, H., & Ischfelder, H. (1937). J. Phys. Chem., 41, 249.

  40. Mousavi, Z., Pirdashti, M., Rostami, A. A., & Dragoi, E.-N. (2020). Int. J. Thermophys., 41(19), 1–26.

  41. Thiyagarajan, R., & Palaniappan, L. (2008). Indian J. Pure Appl. Phys., 46, 852–856.

  42. Elangovan, S., & Mullainathan, S. (2014). Russ. J. Phys. Chem. A., 88(12), 2108–2113.