Journal Menu
By: Rohan Kunder
JJTU university
Styrene oxide prepared by various methods involves the use of raw materials and steps which generate lots of effluents. Economical and greener ways of synthesizing styrene oxide, which is widely used in various industries as raw materials or finished products, is very important. The current research paper deals with the greener ways of synthesizing styrene oxide by minimizing or reusing the effluents. The effluents generated in each step are studied and then reused where ever possible. The effluent that cannot be reused is processed in a way that can be easily decomposed without causing pollution or minimum pollution.
Citation:
Refrences:
-
Batra, M. S., Dwivedi, R., & Prasad, R. (2019). Recent developments in heterogeneous catalyzed epoxidation of styrene-to-styrene oxide. ChemistrySelect, 4(40), 11636–11673.
-
Buckley, B. R., & Neary, S. P. (2011). Organocatalyzed Asymmetric Oxidation Reactions, 18–19.
-
Derboven, P., Van Steenberge, P. H. M., Vandenbergh, J., Reyniers, M.-F., Junkers, T., D’hooge, D. R., & Marin, G. B. (2015). Improved livingness and control over branching in RAFT polymerization of acrylates: Could microflow synthesis make the difference? Macromolecular Rapid Communications, 36(24), 2149–2155.
-
de Bellefon, C., Pestre, N., Lamouille, T., Grenouillet, P., & Hessel, V. (2016). Taming hazardous chemistry by continuous flow technology. Chemical Society Reviews, 45(18), 4892–4928.
-
Huang, X., Fu, X., Jia, Z., et al. (2013). Chiral salen Mn(III) complexes immobilized onto crystalline aluminum oligo-styrenyl phosphonate-hydrogen phosphate (AlSPP) for heterogeneous asymmetric epoxidation. Catalysis Science & Technology, 3, 415–424.
-
Huang, X., Fu, X., Wang, G., et al. (2012). Axially coordinated chiral salen Mn(III) anchored onto azole onium modified ZnPS-PVPA as effective catalysts for asymmetric epoxidation of unfunctionalized olefins. Dalton Transactions, 41, 10661–10669.
-
Jia, W., Liu, Y., Hu, P., Yu, R., Wang, Y., Ma, L., Wang, D., & Li, Y. (2015). Ultrathin CuO nanorods: Controllable synthesis and superior catalytic properties in styrene epoxidation. Chemical Communications, 51(42), 8817–8820.
-
Karakhanov, E. A., Maksimov, A. L., Runova, E. A., Talanova, M. Y., Filippova, T. Y., & Glotov, A. P. (2013). Use of ionic liquids in cyclohexene epoxidation with hydrogen peroxide. Petroleum Chemistry, 53(2), 110–116.
-
Kirm, I., Medina, F., Rodríguez, X., Cesteros, Y., Salagre, P., & Sueiras, J. (2004). Epoxidation of styrene with hydrogen peroxide using hydrotalcites as heterogeneous catalysts. Applied Catalysis A: General, 272(1–2), 175–185.
-
Kockmann, N., & Roberge, D. M. (2009). Harsh reaction conditions in continuous flow microreactors for pharmaceutical production. Chemical Engineering & Technology, 32(11), 1682–1694.
-
Kotlewska, A. J., van Rantwijk, F., Sheldon, R. A., & Arends, I. W. C. E. (2011). Epoxidation and Baeyer-Villiger oxidation using hydrogen peroxide and a lipase dissolved in ionic liquids. Green Chemistry, 13(8), 2154. https://doi.org/10.1039/c1gc15255f
-
Legros, J., Crousse, B., Bonnet-Delpon, D., & Bégué, J.-P. (2002). Design of fluoroketones as efficient reagents for epoxidation reactions in hexafluoropropan-2-ol. Tetrahedron, 58(20), 3993–3998.
-
Limnios, D., & Kokotos, C. G. (2014). 2,2,2-Trifluoroacetophenone: An organocatalyst for an environmentally friendly epoxidation of alkenes. Journal of Organic Chemistry, 79(10), 4270–4276.
-
Movsisyan, M., Delbeke, E. I. P., Berton, J. K. E. T., Battilocchio, C., Ley, S. V., & Stevens, C. V. (2016). Taming hazardous chemistry by continuous flow technology. Chemical Society Reviews, 45(18), 4892–4928.
-
Pagliaro, M., & Hutchings, G. J. (2011). Heterogeneous catalysis for fine chemicals. Catalysis Science & Technology, 1(9), 1543.
-
Patel, R. V., Panchal, J. G., & Menon, S. K. (2010). Synthesis and study of binuclear calix[4]arene Schiff base Co(II) complexes as catalyst in the presence of PhIO for the catalytic oxidation of olefin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 67(1–2), 63–71.
-
Patil, N. S., Uphade, B. S., Jana, P., et al. (2004). Epoxidation of styrene by anhydrous t-butyl hydroperoxide over reusable gold supported on MgO and other alkaline earth oxides. Journal of Catalysis, 223(1), 236–239.
-
Payne, G. B., Deming, P. H., & Williams, P. H. (1961). Reactions of Hydrogen Peroxide. VII. Alkali-Catalyzed Epoxidation and Oxidation Using Nitrile as Co-reactant. Journal of Organic Chemistry, 26(3), 659–663.
-
Qi, B., Lou, L.-L., Wang, Y., Yu, K., Yang, Y., & Liu, S. (2014). Comparison of different prepared Mn-MCM-41 catalysts in the catalytic epoxidation of alkenes with 30% H₂O₂. Microporous and Mesoporous Materials, 190, 275–283.
-
Torki, M., Tangestaninejad, S., Mirkhani, V., Moghadam, M., Mohammadpoor-Baltork, I., & Khosropour, A. R. (2013). Nanomagnet-bound imidazole as a heterogeneous axial ligand for MnIII(salophen)Cl: An efficient, recoverable and recyclable catalyst for epoxidation of alkenes with sodium periodate. Journal of Inorganic and Organometallic Polymers and Materials, 23(4), 923–929.
-
Tyagi, B., Shaik, B., & Bajaj, H. C. (2010). Epoxidation of styrene with molecular O₂ over sulfated Y-ZrO₂ based solid catalysts. Applied Catalysis A: General, 383(1–2), 161–168.
-
Wang, X., Wu, S., Li, Z., Yang, X., Su, H., Hu, J., Huo, Q., Guan, J., & Kan, Q. (2016). Cu(II), Co(II), Fe(III) or VO(II) Schiff base complexes immobilized onto CMK-3 for styrene epoxidation. Microporous and Mesoporous Materials, 221, 58–66.
-
Wang, Y., Zhang, X., Wang, A., Li, X., Wang, G., & Zhao, L. (2014). Synthesis of ZnO nanoparticles from microemulsions in a flow-type microreactor. Chemical Engineering Journal, 235, 191–197.
-
Weissermel, K., & Arpe, H. J. (2003). Industrial Organic Chemistry, 59–85.
-
Xu, G., Xia, Q.-H., Lu, X.-H., Zhang, Q., & Zhan, H.-J. (2007). Selectively catalytic epoxidation of styrene with dry air over the composite catalysts of Co-ZSM-5 coordinated with ligands. Journal of Molecular Catalysis A: Chemical, 266(1–2), 180–187.
-
Xu, J. H., Tan, J., Li, S. W., & Luo, G. S. (2008). Enhancement of mass transfer performance of liquid–liquid system by droplet flow in microchannels. Chemical Engineering Journal, 141(1–3), 242–249.
-
Yadav, G. D., & Pujari, A. A. (2000). Epoxidation of styrene to styrene oxide: Synergism of heteropoly acid and phase-transfer catalyst under Ishii–Venturello mechanism. Organic Process Research & Development, 4(2), 88–93.
-
Yang, G., Chen, X., Wang, X., Xing, W., & Xu, N. (2013). Nickel(II) complex anchored on MCM-41 for the epoxidation of styrene by oxygen. Chinese Journal of Catalysis, 34(7), 1326–1332.
-
Yu, X., Xu, L., Yang, X., Guo, Y., Li, K., Hu, J., Li, W., Ma, F., & Guo, Y. (2008). Preparation of periodic mesoporous silica-included divacant Keggin units for the catalytic oxidation of styrene to synthesize styrene oxide. Applied Surface Science, 254(15), 4444–4451.
-
Zhan, W., Guo, Y., Wang, Y., Guo, Y., Liu, X., Wang, Y., Zhang, Z., & Lu, G. (2009). Study of higher selectivity to styrene oxide in the epoxidation of styrene with hydrogen peroxide over La-doped MCM-48 catalyst. Journal of Physical Chemistry C, 113(17), 7181–7185.
-
Zhang, J., Zhang, S., Peng, C., Chen, Y., Tang, Z., & Wu, Q. (2020). Continuous synthesis of 2,5-hexanedione through direct C–C coupling of acetone in a Hilbert fractal photo microreactor. Reaction Chemistry & Engineering, 5(12), 2250–2259.
-
Zhao, Y., Yao, C., Chen, G., & Yuan, Q. (2013). Highly efficient synthesis of cyclic carbonate with CO₂ catalyzed by ionic liquid in a microreactor. Green Chemistry, 15(2), 446–452.