Nanoelectronics, Nanoparticles and Nanotechnology in Treatment of Psychological Disorders

By:

Abdul Razak Mohamed Sikkander, Rajeev Ranjan, and Sangeeta R Mishra

Volume: 10 | Issue: 01 | Year 2024 | Subscription
International Journal of Environmental Chemistry
Received Date: 03/04/2024
Acceptance Date: 03/11/2024
Published On: 2024-05-02
First Page: 1
Last Page: 18

Journal Menu

Citation:
Abdul Razak Mohamed Sikkander, Rajeev Ranjan, and Sangeeta R Mishra Nanoelectronics, Nanoparticles and Nanotechnology in Treatment of Psychological Disorders International Journal of Environmental Chemistry. 2024; 10(01): 1-18p.
https://doi.org/10.37628/IJEC.v10i01.6385
Abstract

Despite significant advancements in neuroscience, our understanding of brain functionality is far from complete, and ongoing research and testing are crucial for expanding our knowledge. With its billions of neurons and sophisticated neural networks, the brain is incredibly complicated, and scientists are always trying to find solutions for these problems. Here are a few reasons why continued research in the field of brain functionality is essential: The human brain is incredibly complex, and understanding the intricate networks of neurons, their connections, and how they function collectively is an ongoing challenge. Research aims to unravel these complexities at both macroscopic and microscopic levels. There is considerable variability in brain structure and function among individuals. Research efforts seek to understand the factors contributing to this variability and how it relates to cognitive abilities, behavior, and susceptibility to neurological disorders. Learning and memory are fundamentally influenced by neuroplasticity, the brain’s capacity to change and restructure itself. Further research is needed to uncover the mechanisms behind neuroplasticity and how it can be harnessed for cognitive enhancement and rehabilitation following injury. At the molecular and cellular levels, researchers are investigating the intricate signaling pathways, neurotransmitter systems, and genetic factors that influence brain function. Comprehending these pathways is essential to creating focused therapies for mental and neurological illnesses. Advances in brain-computer interfaces hold great potential for therapeutic applications and enhancing human capabilities. Continued research is needed to refine the technology, improve our understanding of brain signals, and explore the ethical implications of such interventions. Advances in brain-computer interfaces hold great potential for therapeutic applications and enhancing human capabilities. Continued research is needed to refine the technology, improve our understanding of brain signals, and explore the ethical implications of such interventions. There are currently no proven therapies for a number of neurological conditions, such as Parkinson’s disease, Alzheimer’s disease, and several mental diseases. The goal of ongoing research is to identify the underlying causes of these illnesses and create more potent treatment plans. Brain research benefits from the integration of various disciplines, including neuroscience, psychology, computer science, and engineering. Collaborative efforts help address the multifaceted nature of brain functionality and promote innovative research approaches. Unprecedented insights into brain activity have been made possible by developments in imaging technologies, such as optogenetics and functional magnetic resonance imaging (fMRI). Further research and development of these technologies will lead to more accurate and thorough analyses. The field of brain functionality is dynamic and evolving. Ongoing research efforts are essential for unraveling the mysteries of the brain, addressing neurological challenges, and ultimately improving our ability to enhance cognitive function, treat disorders, and promote brain health.

Loading

Citation:

Abdul Razak Mohamed Sikkander, Rajeev Ranjan, and Sangeeta R Mishra Nanoelectronics, Nanoparticles and Nanotechnology in Treatment of Psychological Disorders International Journal of Environmental Chemistry. 2024; 10(01): 1-18p.

Refrences:

  1. orgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN, Deisseroth K, Donoghue JP, Hudson KL, Ling GS, MacLeish PR, Marder E, Normann RA, Sanes JR, Schnitzer MJ, Sejnowski TJ, Tank DW, Tsien RY, Ugurbil K, Wingfield JC. The BRAIN Initiative: developing technology to catalyse neuroscience Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668):20140164. doi: 10.1098/rstb.2014.0164. PMID: 25823863; PMCID: PMC4387507.
  2. Borsook Neurological diseases and pain. Brain. 2012 Feb;135(Pt 2):320-44. doi: 10.1093/brain/awr271. Epub 2011 Nov 8. PMID: 22067541; PMCID: PMC3281476.
  3. Patra, J.K., Das, G., Fraceto, L.F. et al. Nano based drug delivery systems: recent developments and future J Nanobiotechnol 16, 71 (2018). https://doi.org/10.1186/s12951-018-0392-8
  4. Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Sci. Pharm. 2019, 87, 20.
  5. Adams CP, Walker KA, Obare SO, Docherty KM. Size-dependent antimicrobial effects of novel palladium PLoS One. 2014 Jan 20;9(1):e85981. doi: 10.1371/journal.pone.0085981. PMID: 24465824; PMCID: PMC3896427.
  6. Zhang, , Li, J., Zhang, T. et al. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy – an illustration with firsthand examples. Acta Pharmacol Sin 39, 825–844 (2018).
  7. Shi J, Votruba AR, Farokhzad OC, Langer Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010 Sep 8;10(9):3223-30. doi: 10.1021/nl102184c. PMID: 20726522; PMCID: PMC2935937.
  8. Wen H, Jung H, Li X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015 Nov;17(6):1327-40. doi: 10.1208/s12248- 015-9814-9. Epub 2015 Aug PMID: 26276218; PMCID: PMC4627459.
  9. Singh R, Lillard JW Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009 Jun;86(3):215-23. doi: 10.1016/j.yexmp.2008.12.004. Epub 2009 Jan 7. PMID: 19186176; PMCID: PMC3249419.
  10. Rumiana Tenchov, Robert Bird, Allison Curtze, and Qiongqiong Zhou, Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement,ACS Nano 2021 15 (11), 16982-17015,DOI: 10.1021/acsnano.1c04996
  11. Patel VR, Agrawal Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011 Apr;2(2):81-7. doi: 10.4103/2231-4040.82950. PMID: 22171298; PMCID: PMC3217698.
  12. Adepu S, Ramakrishna Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021 Sep 29;26(19):5905. doi: 10.3390/molecules26195905. PMID: 34641447; PMCID: PMC8512302.
  13. Chong Li, Jiancheng Wang, Yiguang Wang, Huile Gao, Gang Wei, Yongzhuo Huang, Haijun Yu, Yong Gan, Yongjun Wang, Lin Mei, Huabing Chen, Haiyan Hu, Zhiping Zhang, YiguangJin,Recent progress in drug delivery,Acta Pharmaceutica SinicaB,Volume 9, Issue 6,2019,Pages 1145-1162,ISSN 2211-3835, https://doi.org/10.1016/j.apsb.2019.08.003
  14. Chandrakala, V., Aruna, V. &Angajala, G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. emergent mater. 5, 1593–1615 (2022). https://doi.org/10.1007/s42247-021-00335-x
  15. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm 2018 Jan;26(1):64-70. doi: 10.1016/j.jsps.2017.10.012. Epub 2017 Oct 25. PMID: 29379334; PMCID: PMC5783816.
  16. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle- Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol 2020 Aug 20;7:193. doi: 10.3389/fmolb.2020.00193. PMID: 32974385; PMCID: PMC7468194.
  17. Vargason, A.M., Anselmo, A.C. & Mitragotri, S. The evolution of commercial drug delivery Nat Biomed Eng 5, 951–967 (2021).
  18. De Jong WH, Borm Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3(2):133-49. doi: 10.2147/ijn.s596. PMID: 18686775; PMCID: PMC2527668.
  19. Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan Machine Learning in Drug Discovery: A Review. ArtifIntell Rev. 2022;55(3):1947-1999. doi: 10.1007/s10462-021-10058-4. Epub 2021 Aug 11. PMID: 34393317; PMCID: PMC8356896.
  20. Bashor, C.J., Hilton, I.B., Bandukwala, H. et al. Engineering the next generation of cell-based Nat Rev Drug Discov 21, 655–675 (2022). https://doi.org/10.1038/s41573-022- 00476-6
  21. García-Gutiérrez MS, Navarrete F, Sala F, Gasparyan A, Austrich-Olivares A, Manzanares J. Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality. Front 2020 May 15;11:432. doi: 10.3389/fpsyt.2020.00432. PMID: 32499729; PMCID: PMC7243207.
  22. Johnson MD, Lim HH, Netoff TI, Connolly AT, Johnson N, Roy A, Holt A, Lim KO, Carey JR, Vitek JL, He B. Neuromodulation for brain disorders: challenges and opportunities. IEEE Trans Biomed 2013 Mar;60(3):610-24. doi: 10.1109/TBME.2013.2244890. Epub 2013 Feb 1. PMID: 23380851; PMCID: PMC3724171.
  23. Wareham, K., Liddelow, S.A., Temple, S. et al. Solving neurodegeneration: common mechanisms and strategies for new treatments. Mol Neurodegeneration 17, 23 (2022). https://doi.org/10.1186/s13024-022-00524-0
  24. Parpura V, Silva GA, Tass PA, Bennet KE, Meyyappan M, Koehne J, Lee KH, Andrews RJ. Neuromodulation: selected approaches and J Neurochem. 2013 Feb;124(4):436-53. doi: 10.1111/jnc.12105. Epub 2012 Dec 26. PMID: 23190025; PMCID: PMC3557763.
  25. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015 Jun;126(6):1071-1107. doi: 10.1016/j.clinph.2015.02.001. Epub 2015 Feb 10. PMID: 25797650; PMCID: PMC6350257.
  26. Hallett Transcranial magnetic stimulation and the human brain. Nature. 2000 Jul 13;406(6792):147-50. doi: 10.1038/35018000. PMID: 10910346.
  27. Mark Hallett,Transcranial Magnetic Stimulation: A Primer,Neuron,Volume 55, Issue 2,2007,Pages 187-199,ISSN 0896-6273, https://doi.org/10.1016/j.neuron.2007.06.026
  28. Aberra AS, Wang B, Grill WM, Peterchev AV. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical Brain Stimul. 2020 Jan-Feb;13(1):175- 189. doi: 10.1016/j.brs.2019.10.002. Epub 2019 Oct 7. PMID: 31611014; PMCID: PMC6889021.
  29. Berardelli A, Abbruzzese G, Chen R, Orth M, Ridding MC, Stinear C, Suppa A, Trompetto C, Thompson PD. Consensus paper on short-interval intracortical inhibition and other transcranial magnetic stimulation intracortical paradigms in movement Brain Stimul. 2008 Jul;1(3):183-91. doi: 10.1016/j.brs.2008.06.005. Epub 2008 Jul 1. PMID: 20633384.
  30. Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000 Mar 1;523 Pt 2(Pt 2):503-13. doi: 10.1111/j.1469-7793.2000.t01-1- x. Erratum in: J Physiol (Lond) 2000 May 1;524 Pt 3:942. PMID: 10699092; PMCID: PMC2269813.
  31. Ferreri F, Ponzo D, Hukkanen T, Mervaala E, Könönen M, Pasqualetti P, Vecchio F, Rossini PM, Määttä S. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG- TMS study. J Neurophysiol. 2012 Jul;108(1):314-23. doi: 10.1152/jn.00796.2011. Epub 2012 Mar PMID: 22457460.
  32. Patel SR, Lieber Precision electronic medicine in the brain. Nat Biotechnol. 2019 Sep;37(9):1007-1012. doi: 10.1038/s41587-019-0234-8. Epub 2019 Sep 2. Erratum in: Nat Biotechnol. 2019 Oct 24;: PMID: 31477925; PMCID: PMC6741780.
  33. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016 Jan 1;115(1):19-38. doi: 1152/jn.00281.2015. Epub 2015 Oct 28. Erratum in: J Neurophysiol. 2020 Mar 1;123(3):1277. PMID: 26510756; PMCID: PMC4760496.
  34. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain JAMA Neurol. 2013 Feb;70(2):163-71. doi: 10.1001/2013.jamaneurol.45. PMID: 23407652.
    Kringelbach, , Jenkinson, N., Owen, S. et al. Translational principles of deep brain stimulation.
  35. Kringelbach, , Jenkinson, N., Owen, S. et al. Translational principles of deep brain stimulation.
    Nat Rev Neurosci 8, 623–635 (2007).
  36. Kook, G.; Lee, S.W.; Lee, H.C.; Cho, I.-J.; Lee, H.J. Neural Probes for Chronic Applications.
    Micromachines 2016, 7, 179.
  37. Calabresi P, Centonze D, Bernardi G. Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci. 2000 Oct;23(10 Suppl):S57-63. doi: 10.1016/s1471- 1931(00)00017-3. PMID: 11052221.
  38. Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. Adv Funct Mater. 2018 Mar 21;28(12):1701269. doi: 10.1002/adfm.201701269. Epub 2017 Jul 19. PMID: 29805350; PMCID: PMC5963731.
  39. Fattahi P, Yang G, Kim G, Abidian MR. A review of organic and inorganic biomaterials for neural interfaces. Adv Mater. 2014 Mar 26;26(12):1846-85. doi: 10.1002/adma.201304496. PMID: 24677434; PMCID: PMC4373558.
  40. Hong G, Viveros RD, Zwang TJ, Yang X, Lieber CM. Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry. 2018 Jul 10;57(27):3995-4004. doi: 10.1021/acs.biochem.8b00122. Epub 2018 Mar 19. PMID: 29529359; PMCID: PMC6039269.
  41. Hong G, Yang X, Zhou T, Lieber CM. Mesh electronics: a new paradigm for tissue-like brain probes. CurrOpinNeurobiol. 2018 Jun;50:33-41. doi: 10.1016/j.conb.2017.11.007. Epub 2017 Dec 1. PMID: 29202327; PMCID: PMC5984112.
  42. Sun FT, Morrell MJ. Closed-loop neurostimulation: the clinical experience. Neurotherapeutics. 2014 Jul;11(3):553-63. doi: 10.1007/s13311-014-0280-3. PMID: 24850309; PMCID: PMC4121459.
  43. Parastarfeizabadi, M., Kouzani, A.Z. Advances in closed-loop deep brain stimulation devices. J NeuroEngineeringRehabil 14, 79 (2017).
  44. Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD, Sarma AA, Sorice BL, Perge JA, Jarosiewicz B, Hochberg LR, Shenoy KV, Henderson JM. Clinical translation of a high- performance neural prosthesis. Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28. PMID: 26413781; PMCID: PMC4805425.
  45. Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R. The brain activity map project and the challenge of functional connectomics. Neuron. 2012 Jun 21;74(6):970-4. doi: 10.1016/j.neuron.2012.06.006. PMID: 22726828; PMCID: PMC3597383.
  46. Scanziani, M., Häusser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009). https://doi.org/10.1038/nature08540
  47. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076. PMID: 22596161; PMCID: PMC3640850.
  48. Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442, 164–171.
  49. Rajangam S, Tseng PH, Yin A, Lehew G, Schwarz D, Lebedev MA, Nicolelis MA. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates. Sci Rep. 2016 Mar 3;6:22170. doi: 10.1038/srep22170. PMID: 26938468; PMCID: PMC4776675.
  50. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for self-feeding. Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28. PMID: 18509337.
  51. Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci. 2008 Nov 12;28(46):11830-8. doi: 10.1523/JNEUROSCI.3879-08.2008. PMID: 19005048; PMCID: PMC3844837.
  52. Shin, H., Son, Y., Chae, U. et al. Multifunctional multi-shank neural probe for investigating and modulating long-range neural circuits in vivo. Nat Commun 10, 3777 (2019).
  53. Sang Min Won, Enming Song, Jonathan T. Reeder, John A. Rogers,Emerging Modalities and Implantable Technologies for Neuromodulation, Cell, Volume 181, Issue 1,2020,Pages 115- 135,ISSN 0092-8674,
  54. Resnik DB, Tinkle SS. Ethical issues in clinical trials involving nanomedicine. Contemp Clin Trials. 2007 Jul;28(4):433-41. doi: 10.1016/j.cct.2006.11.001. Epub 2006 Nov 17. PMID: 17166777; PMCID: PMC2695593.
  55. Tovar-Lopez, F.J. Recent Progress in Micro- and Nanotechnology-Enabled Sensors for Biomedical and Environmental Challenges. Sensors 2023, 23, 5406.
  56. Rasmi, Y.; Saloua, K.S.; Nemati, M.; Choi, J.R. Recent Progress in Nanotechnology for COVID-19        Prevention,       Diagnostics      and      Treatment.       Nanomaterials  2021,   11, 1788.
  57. Liu, W.; Speranza, G. Functionalization of Carbon Nanomaterials for Biomedical Applications. C 2019, 5, 72.
  58. Kristoffersson, A.; Lindén, M. Wearable Sensors for Monitoring and Preventing Noncommunicable Diseases: A Systematic Review. Information 2020, 11, 521.
  59. Ting DSW, Carin L, Dzau V, Wong TY. Digital technology and COVID-19. Nat Med. 2020 Apr;26(4):459-461. doi: 10.1038/s41591-020-0824-5. PMID: 32284618; PMCID: PMC7100489. Wang, Z., Tang, K. Combating COVID-19: health equity matters. Nat Med 26, 458 (2020).
  60. Wang, , Tang, K. Combating COVID-19: health equity matters. Nat Med 26, 458 (2020).

https://doi.org/10.37628/IJEC.v10i01.6385