Journal Menu
By: Prakash Vaithyanathan
Science Teacher and Innovator, 50, L. B. Road, Adyar Chennai, India.
Transparent cellulose is a research hotspot in current science. Transparent nanocellulose finds applications in energy, environment, defense, catalysis, and medicine. Sodium silicate-modified cellulose fibers were reported to be transparent. There have been various other strategies, like generating sulfate groups on nanocellulose surfaces for inducing transparency in cellulose-based materials. However, the synthesis of transparent nanospheres of cellulose with encapsu-lated sodium silicate has never been reported in the literature. Here in, for the first time, it is surmised that the cellulose nanospheres encapsulating sodium silicate will outperform any oth-er known morphologies of nanocellulose, for instance nanofibers, leading to efffective light management, especially in the perovskite-based solar cells. Sonochemistry-based approaches to synthesize cellulose nanospheres with average diameters around 50 nanometers have been demonstrated earlier. These nanospheres of cellulose encapsulated with aqueous or non-aqueous substances were used as effective nanocarriers for biomedical applications. In particu-lar, sodium silicate-encapsulated nanospheres of cellulose (SSNSC) were assumed to be a new strategic material that could act as a promising support for nanoyeast buds for accelerating the carbohydrate fermentation process via effective management of the sun’s light and heat. It is hypothesized that SSNSC, with their unique spherical morphology, will aid in the solar energy-based fermentation process by acting as an effective light management layer due to enhanced reflections within.
Citation:
Refrences:
1. Voskoboinikov IV, Konstantinova, SA , Korotkov AN, et al. Preparation and properties of aqueous dispersions of cellulose nanospheres. Russ J Bioorg Chem. 2013;39(7):694–698. doi:10.1134/S1068162013070145.
2. Li LW, Su YC, Klein F, et al. Synchronized ultrasonography and electromyography signals detection enabled by nanocellulose based ultrasound transparent electrodes. Carbohydr Polym. 2025;347:122641. doi:10.1016/j.carbpol.2024.122641.
3. Peng LY, Fang ZQ, Lin XQ, et al. The critical role of Ca2+ in improving the transparency and strength of high-filler nanocellulose content /montmorillonite nanocomposite films. ACS Appl Mater Interfaces. 2024;16(29): 38387–38394. doi:10.1021/acsami.4c05970.
4. Zhang YT, Liu Y, Dong CH, et al. Transparent thermal stable, water resistant and high gas barrier films from cellulose nanocrystals prepared by reactive deep eutectic solvents. Int J Biol Macromol. 2024;276(2):134107. doi:10.1016/j.ijbiomac.2024.134107.
5. Xu YT, Wu ZZ, Li A, et al. Nanocellulose composite films in food packaging materials: A review. Polym. 2024;16(3):423. doi:10.3390/polym16030423.
6. Dermol S, Borin B, Gregor-Svetec D, et al. The development of a bacterial nanocellu-lose/cationic starch hydrogel for the production of sustainable 3D-printed packaging foils. Polym. 2024;16(11):1527. doi:10.3390/polym16111527.
7. Zhou TL, Choi HW, Jabbour G. Ultrathin freestanding film prepared from TEMPO-mediated Oxidation and homogenized hydrogel. ACS Omega. 2024;9(20):21798-21804. doi:10.1021/acsomega.3c08062.
8. Zhang LJQ, Huang Y, Wu M. A partial dissolution-regeneration strategy for preparing water-resistant composite nanocellulose film of cellulose I and cellulose II with high light transmit-tance and adjustable haze. Compos Part B-Eng. 2024;274:111285. doi:10.1016/j.compositesb.2024.111285.
9. Mayer F, Prado-Roller A, Mautner A. Retain strength, gain ductility: tough and nanopapers by mercerisation. Cellulose. 2024;31(3):1533–1544. doi:10.1007/s10570-023-05714-7.
10. Gence L, Quero F, Escalona M, et al. Wrinkled TiNAgNW nanocomposites for high-performance flexible electrodes on TEMPO-oxidizednanocellulose. Nanomater. 2024;14(14):1178. doi:10.3390/nano14141178.
11. Wang WL, Xue YY, Wang XB, et al. Lignin-enhanced wet strength and UV-Blocking prop-erties of nanocellulose-based composite films obtained by casting/ hot-pressing methods. Eur Polym J. 2024;213:113109. doi:10.1016/j.eurpolymj.2024.113109.
12. de Amorim JDP, Cavalcanti YD, de Medeiros ADM, et al. Synthesis of bacterial cellulose films as a platform for targeted drug delivery in wound Care. Proc. 2024;12(7):1282. doi:10.3390/pr12071282.
13. Kim JK, Oh SH, Song MO, et al. Wholly bio-based, ultra-tough, transparent PLA compo-sites reinforced with nanocellulose and nanochitin. Compos Part B Eng. 2024:281:1–11. doi:10.1016/j.compositesb.2024.111563.
14. Guo JR, He JH, Zhang SY. In situ self-assembly of pulp microfibers and nanofibers into a transparent, high-performance and degradable film. Int J Biol Macromol. 2024; 277:134294. doi:10.1016/j.ijbiomac.2024.134294.
15. Zhang SH, Xu J, Xu J, et al. In-situ growth of silver nanoparticles on 3D cellulose nano-fibrous network for SERS sensing of pesticide residues on uneven surfaces. J Food Compos Anal. 2024;134:106564. doi:10.1016/j.jfca.2024.106564.
16. Yan ZF, Jiang S, Xi JF, et al. Frost-resistant nanocellulose-based organohydrogel with high mechanical strength and transparency. J Colloid Interface Sci. 2024;661:879–887. doi:10.1016/j.jcis.2024.02.002.
17. Wang Z, Zhu M, Li J, et al. Nanocellulose based hydrogel for flexible sensors: Current pro-gress and future perspective. Nano Energy. 2024;129:109974. doi:10.1016/j.nanoen.2024.109974.
18. Lan Y, Liu W, Lv Z, et al. Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators. Nano Eergy. 2024;129:110047. doi:10.1016/j.nanoen.2024.110047.
19. Kim M, Lim T, Park H, et al. Nanocellulose-based optical and radio frequency transparent barrier coating for food packaging. Cellulos. 2024;31(8):5185–5197. doi:10.1007/s10570-024-05915-8.
20. Malagurski I, Lazic J, Ilic-Tomic T, et al. Double layer bacterial-nanocellulose-poly(hydroxyoctanoate) film activated by prodigiosin as sustainable, transparent, UV-blocking material. Int J Biol Macromol. 2024;279:135087. doi:10.1016/j.ijbiomac.2024.135087.
21. Kaschuk JJ, Al Haj Y, Garcia JV, et al. Processing factors affecting roughness, optical and mechanical properties of nanocellulose films for optoelectronics. Carbohydr Polym. 2024;332:121877. doi:10.1016/j.carbpol.2024.121877.
22. Hai LV, Hoa PD, Kim J, et al. All-biobased multilayer transparent wood infiltrated with cel-lulose and chitosan nanofibers: Improving anisotropic mechanical and ultraviolet shielding properties. Ind Crops Prod. 2024;222:119508. doi:10.1016/j.indcrop.2024.119508.
23. Klochko NP, Barbash VA, Kopach VR, et al. Composite fabric with nanocellulose impreg-nated cotton for eco-friendly thermoelectric textile. Cellulose. 2024;31:5947–5961. doi:10.1007/s10570-024-05953-2.
24. Bi H, Wei Y, Wang Z, Chen G. Fundamental investigation of micro-nano cellulose and lig-nin interaction for transparent paper: Experiment and electrostatic potential calculation. Int J Biol Macrmol. 2024;260:129180. doi:10.1016/j.ijbiomac.2023.129180.
25. Yao X, Zhao Y, Zhong L, Wu Y. A transparent superhydrophobic coating on wood-based panel surfaces. Wood Mater Sci Eng. 2024;1–9. doi:10.1080/17480272.2024.2352095.
26. Zhang S, Xi J, Chu Y, et al. High strength and polyvinyl alcohol/ film with encoding fluo-rescence properties. Colloids Surf A Physicochem Eng Asp. 2024;698:134572. doi:10.1016/j.colsurfa.2024.134572.
27. Zhao L, Zhang Y, Pan Y, et al. Sulfated cellulose nanocrystal isolated from waste cotton fabrics by deep eutectic solvent and its application in polymer nanocomposite films. J Vinyl Addit Technol. 2024. doi:10.1002/vnl.22154.
28. Wloch D, Herrera N, Lee KY. Transparent multilayer acrylic composites reinforced with poly (acrylated urethane) filled low grammage bacterial cellulose nanopaper. Macromol Rapid Comun. 2024;45(15):2400098. doi:10.1002/marc.202400098.
29. Nasiri N, Cainglet HE, Garnier G, et al. Transparent maltitol- cellulose nanocrystal film for high performance barrier. Cellulose. 2024;31(12):7421–7436. doi:10.1007/s10570-024-06022-4.
30. Yu, K, Yang L, Zhang S, Liu H, et al. Strong, tough, conductive and transparent hydrogel based on Ca2+-induced cross-linked double-networks and its adsorption of methylene blue dye. Int J Biol Macromol. 2024;274:133417. doi:10.1016/j.ijbiomac.2024.133417.
31. Chen S, Xu D, Yin H, et al. Large-scale engineerable films tailored with cellulose nano-fibrils for lighting management and thermal insulation. Small. 2024;20(43):2401283. doi:10.1002/smll.202401283.
32. Sun J, Fang W, Liza AA, et al. Photoluminescent nanocellulosic film for selective Hg2+ ion detection. Polym. 2024;16(11):1583. doi:10.3390/polym16111583.
33. Lin Z, Fu X, Zheng K, et al. Cellulose surface nanoengineering for visualizing food safety. Nano Lett. 2024;24(33):10016–10023. doi:10.1021/acs.nanolett.4c01513.
34. Jaiswal AK, Hokkanen A, Khakalo S, et al. Thermochromic films for temperature-adaptive passive cooling. ACS Appl Mater Interfaces. 2024;16(12):15262–15272. doi:10.1021/acsami.3c18689.
35. Chen W, Ma J, Yu D, et al. Transparent super stretchable, freezing-tolerant, self-healing ion-ic conductive cellulose based eutectogel for multi-functional sensors. Int J Biol Macromol. 2024;266:131129. doi:10.1016/j.ijbiomac.2024.131129.
36. Song L, Yan C, Che X, Yao S, Nie S, Xu H. Nanocellulose from preparation to application: A mini review. Curr Nanosci. 2023;19(4):459–472. doi:10.2174/1573413718666220513114001.
37. Patel DK, Patil TV, Ganguly K, et al. Nanocellulose-assisted 3D-printable, transparent, bio-adhesive, conductive, and biocompatible hydrogels as sensors and moist electric generators. Carbohydr Polym. 2023;315:120963. doi:10.1016/j.carbpol.2023.120963.
38. Hastuti N, Agustini L, Amin Y, et al. A novel transparent hydrogel made of nanocellulose derived from oil palm residue: evaluation of its water retention and biodegradation proper-ties. 2023;46(4). doi:10.1007/s12034-023-03065-4.
39. Raghuwanshi VS, Vir AB, Lin MQ, et al. From tranparent to structural white: Modulating nanoscale self-assembly in silica and nanocellulose composites. Colloids Surf A Physico-chem Eng Asp. 2023;675:131999. doi:10.1016/j.colsurfa.2023.131999.
40. Moradian M, Wiebe H, van de Ven TGM. Ultrathin ultrastrong transparent films made from regenerated cellulose and epichlorohydrin. Carbohydr Polym. 2023;318:121131. doi:10.1016/j.carbpol.2023.121131.
41. Wang H, Qian X, An X. Visual fluorescence detection of ciprofloxacin by Zn-metal-organic framework@nanocellulose transparent films based on aggregation-induced emission. Int J Biol Macromol. 2023;251:126363. doi:10.1016/j.ijbiomac.2023.126363.
42. Ishioka S, Hirano T, Matoba N, et al. Property-thickness correlations of transparent all-laminates. J Fiber Sci Technol. 2023;79(7):156–164. doi:10.2115/fiberst.2023-0020.
43. Dinesh G, Kandasubramanian B. Fabrication of transparent paper devices from nanocellu-lose fiber. Mater Chem Phys. 2022;281:125707. doi:10.1016/j.matchemphys.2022.125707.
44. Kim SW, Lee KH, Lee YH, Youe WJ, Gwon JG, Lee SY. Transparent and multi-foldable nanocellulose paper microsupercapacitors. Adv Sci. 2022;9(34):2203720. doi:10.1002/advs.202203720.
45. Martínez-Miranda LJ, Jang SH. Mixtures of silver nanowires and nanocellulose for green chemistry Quasi-1D transparent electrodes. Phys Status Solidi B. 2022;259(8):2100606. doi:10.1002/pssb.202100606.
46. Wu J, Chen YF, Shen W, et al. Highly sensitive, flexible and transparent TiO2/ nanocellu-lose humidity sensor for respiration and skin monitoring. Ceram Int. 2023;49(2): 2204–2214. doi:10.1016/j.ceramint.2022.09.187.
47. Septevani AA, Burhani D, Sampora Y, et al. A systematic study on the fabrication of trans-parent nanopaper based on controlled cellulose nanostructure from oil palm empty fruit bunch. J Polym Environ. 2022;30(9):3901–3913. doi:10.1007/s10924-022-02484-4.
48. de Souza SS, de Oliveira KPV, Berti FV, et al. Optically transparent and stretchable pure bacterial nanocellulose. J Polym Res. 2022;29(9). doi:10.1007/s10965-022-03213-0.
49. Pan Y, Qin Z, Kheiri S, et al. Optical printing of conductive silver on ultrasmooth nanocellu-lose paper for flexible electronics. Adv Eng Mater. 2022;24(7):2101598. doi:10.1002/adem.202101598
50. Liu X, Dong X, Wang H, et al. Transparent nanopaper from nanofibrillated bamboo pulp. BioResour. 2023;18(2):3995–4005. doi:10.15376/biores.18.2.3995-4005.
51. Jaouahar M, Ablouh EH, Hanani Z, et al. Preparation and characterization of sulfated nano-cellulose: From hydrogels to highly transparent films. Int J Biol Macromol. 2024;260:129464. doi:10.1016/j.ijbiomac.2024.129464.
52. Su J, Yang Y, Wan C, Li X, Chai Y, Chai H, Yuan J, Wu YA. A novel flame-retardant, smoke-suppressing, and superhydrophobic transparent bamboo. Res. 2024;7:0317. doi:10.34133/research.0317.
53. Tzhayik O, Pulidindi IN, Gedanken A. Forming nanospherical cellulose containers. Ind Eng Chem Res. 2014;53(36):13871–13880. doi:10.1021/ie5026198.
54. Pulidindi IN, Kimchi BB, Gedanken A. Can cellulose be a sustainable feedstock for bioeth-anol production? Renew Energy. 2014;71:77–80. doi:10.1016/j.renene.2014.05.032.
55. Korzen L, Pulidindi IN, Israel A, et al. Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Adv. 2015;5:16223–16229. doi:10.1039/C4RA14880K.
56. Korzen L, Pulidindi IN, Israel A, et al. Marine integrated culture of carbohydrate rich Ulva rigida for enhanced production of bioethanol. RSC Adv. 2015;5:59251–59256. doi:10.1039/C5RA09037G.
57. Victor A, Pulidindi IN, Gedanken A. Assessment of holocellulose for the production of bioethanol by conserving Pinus radiata cones as renewable feedstock. J Environ Manag. 2015;162:215–220. doi:10.1016/j.jenvman.2015.07.038.
58. Kumar VB, Pulidindi IN, Kinel-Tahan Y, et al. Evaluation of the potential of Chlorella vulgaris for bioethanol production. Energy Fuels. 2016;30(4):3161–3166. doi:10.1021/acs.energyfuels.6b00253.
59. Klein M, Griess O, Pulidindi IN, et al. Bioethanol production from Ficus religiosa leaves using microwave irradiation. J Environ Manag. 2016;177:20–25. doi:10.1016/j.jenvman.2016.03.050.
60. Pulidindi IN, Gedanken A. Biofuels and biochemicals from biomass. Open J Chem. 2021;7(1):22–24. doi:10.17352/ojc.000024.
61. Pulidindi IN, Gedanken A. Solar Intervention in Bioenergy. In: Sahay S, editor. Hand Book of Biofuels. Cambridge, MA: Academic press; 2021. 641–642. doi:10.1016/C2019-0-04999-0.
62. Pulidindi IN, Gedanken A. The Catalytic Production of Biofuels (Biodiesel and Bioethanol) Using Sonochemical, Microwave, and Mechanical Methods. In: Torok B, Schaefer C, edi-tors. Non-traditional Activation Methods in Green and Sustainable Applications: Micro-waves, Ultrasound, Photo, Electro and Mechanochemistry, and High Hydrostatic Pressure. 1st edition. Amsterdam: Elsevier; 2020.
63. Pulidindi IN, Gedanken A. Can Biofuels Alleviate the Energy and Environmental Crisis? New York: Book, Nova Science Publishers, Inc; 2019.
64. Pulidindi IN, Korzen L, Tabah B, et al. Potential Applications of Ulva rigida for Biofuels and Biochemicals Production. In: Bourgougnon N, editor. Seaweeds: Biodiversity, Envi-ronmental Chemistry, and Ecological Impacts. New York: Nova Science Publishers, Inc.; 2017.
65. Pulidindi IN, Gedanken A. Employing Novel Techniques (Microwave and Sonochemistry) in the Synthesis of Biodiesel and Bioethanol. In: Fang Z, Fan L, Grace JR, Ni Y, Scott NR, Smith RL Jr, editors. Production of Biofuels and Chemicals: Ultrasound. Dordrecht: Spring-er; 2015. 159–188. doi:10.1007/978-94-017-9624-8_6.