This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Journal Menu
By: Md. Emran Hossain and Shilpi Islam
1Professor, Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh.
2Professor, Department of Animal Science and Nutrition, Gazipur Agricultural University Gazipur Bangladesh.
The use of slow-release nutrients in ruminant nutrition has emerged as a promising strategy to enhance efficiency and promote sustainability in livestock production systems. Unlike conventional nutrient sources that are rapidly degraded in the rumen, slow-release formulations provide a controlled, steady release of essential nutrients, such as nitrogen, amino acids, minerals, and vitamins. This steady supply supports optimal rumen microbial activity, improves nutrient utilization, and minimizes metabolic disturbances, leading to enhanced animal performance. Furthermore, slow-release nutrients reduce nutrient losses and environmental emissions by improving feed efficiency and lowering excretions of nitrogen and phosphorus, key pollutants in livestock operations. This review explores the mechanisms through which slow-release nutrients function in ruminants, their effects on health, productivity, and reproductive performance, and their role in reducing the environmental footprint of livestock farming. By integrating slow-release technologies, ruminant producers can achieve both economic benefits and improved sustainability, contributing to more efficient and environmentally friendly livestock production systems.
Keywords: Ruminant nutrition, livestock, microbial fermentation, encapsulation, controlled release of energy
Citation:
Refrences:
1. Owens FN, Basalan M. Ruminal fermentation. In: Rumenology. 2016. p. 63–102. doi:10.1007/978-3-319-30533-2_3.
2. Niazifar M, Alipour MJ, Zafari N, Seifi H, Nobakht A, Pourzand MH, et al. Slow-release non-protein nitrogen sources in animal nutrition: A review. Heliyon. 2024;10(13):e33752. doi:10.1016/j.heliyon.2024.e33752.
3. Ma SW, Faciola AP. Impacts of slow-release urea in ruminant diets: A review. Fermentation. 2024;10(10):6–12. doi:10.3390/fermentation10100527.
4. Cherdthong A, Wanapat M. Development of urea products as rumen slow-release feed for ruminant production: A review. Aust J Basic Appl Sci. 2010;4(8):2232–2241.
5. Garba AM, Firincioğlu SY. Role of encapsulation nutrients for improvement of ruminant performance and ruminant-derived products. Eurasian J Agric Res. 2023;7(2):109–126.
6. Joysowal M, Tyagi AK, Tyagi N, Kumar S, Keshri A. Use of slow release ammonia products in ruminant diet: A review. J Entomol Zool Stud. 2019;7(2):882–888.
7. Behan AA, Loh TC, Fakurazi S, Kaka U, Kaka A, Samsudin AA. Effects of supplementation of rumen protected fats on rumen ecology and digestibility of nutrients in sheep. Animals. 2019;9(7). doi:10.3390/ani9070400.
8. Guo Y, Xiao L, Jin L, Yan S, Niu D, Yang W. Effect of commercial slow-release urea product on in vitro rumen fermentation and ruminal microbial community using RUSITEC technique. J Anim Sci Biotechnol. 2022;13(1):1–14. doi:10.1186/s40104-022-00700-8.
9. Siddiqui SA, Al-Qubaisi MS, Sadiq NM, Wahab RA, Badarudin S, Saeed MS, et al. Bioactive-loaded nanodelivery systems for the feed and drugs of livestock; purposes, techniques and applications. Adv Colloid Interface Sci. 2022;308:102772. doi:10.1016/j.cis.2022.102772.
10. Kertz AF. Urea feeding to dairy cattle: A historical perspective and review. Prof Anim Sci. 2010;26(3):257–272. doi:10.15232/S1080-7446(15)30593-3.
11. Holder VB. The effects of slow release urea on nitrogen metabolism in cattle. [dissertation]. Lexington (KY): University of Kentucky; 2012. Available from: https://uknowledge.uky.edu/animalsci_etds/6.
12. Giorgino A, Fiore E, Giammarco M, Trabalza-Marinucci M, Bani P, Martino G, et al. Effect of dietary organic acids and botanicals on metabolic status and milk parameters in mid–late lactating goats. Animals. 2023;13(5):1–12. doi:10.3390/ani13050797.
13. Darwin R, Blignaut D. Alkaline treatment for preventing acidosis in the rumen culture fermenting carbohydrates: An experimental study in vitro. J Adv Vet Anim Res. 2019;6(1):100–107. doi:10.5455/javar.2019.f319.
14. Udainiya S, Tiwari A, Ahirwar MK, Mishra A. Rumen acidosis. In: Periparturient Diseases in Cattle. 2024. 39–50. doi:10.1002/9781394204007.ch5.
15.Calsamiglia S, Blanch M, Ferret A, Moya D. Is subacute ruminal acidosis a pH-related problem? Causes and tools for its control. Anim Feed Sci Technol. 2012;172(1–2):42–50. doi:10.1016/j.anifeedsci.2011.12.007.
16.Shalit U, Maltz E, Silanikove N, Berman A. Water, sodium, potassium, and chlorine metabolism of dairy cows at the onset of lactation in hot weather. J Dairy Sci. 1991;74(6):1874–1883. doi:10.3168/jds.S0022-0302(91)78353-7.17.Tsuchiya Y, Kawahara N, Kim YH, Ichijo T, Sato S. Changes in oxidative stress parameters in healthy and diseased Holstein cows during the transition period in Yamagata Prefecture, Japan. J Vet Med Sci. 2020;82(7):955–961. doi:10.1292/jvms.20-0024.
18.Khalil I, Zafar N, Elshikh M, Siddiqui AJ, Kashif A, Syed F. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants. 2020;9(1). doi:10.3390/antiox9010024.
19.Ganai AM, Haq Z, Beigh YA, Sheikh GG. Bypass nutrient technology with recent advances for enhancing animal production: A review. J Pharmacogn Phytochem. 2019;5:269–275.
20.Esposito G, Irons PC, Webb EC, Chapwanya A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim Reprod Sci. 2014;144(3–4):60–71. doi:10.1016/j.anireprosci.2013.11.007.
21.Marques TC, Romano CC, Fischer V, Reiner G, Poppi D, Pilau EJ, et al. Effect of rumen-protected choline on dairy cow metabolism, immunity, lactation performance, and vaginal discharge microbiome. J Dairy Sci. 2024;107(5):2864–2882. doi:10.3168/jds.2023-23850.
22.Shahsavari A, D’Occhio MJ, Al Jassim R. The role of rumen-protected choline in hepatic function and performance of transition dairy cows. Br J Nutr. 2016;116(1):35–44. doi:10.1017/S0007114516001641.
23.Humer E, Bruggeman G, Zebeli Q. A meta-analysis on the impact of the supplementation of rumen-protected choline on the performance of ruminants. 2019.
24Mangrulkar SV, Manwar JV, Hatwar L, Devare D, Shinde R, Sahare K, et al. A comprehensive review on pleiotropic effects and therapeutic potential of soy lecithin. Adv Tradit Med. 2024;doi:10.1007/s13596-024-00770-1.
25.Kaur J, Kaur R, Mahesh MS, Thakur SS. Rumen-protected amino acids for ruminants. In: Mahesh MS, editor. Feed additives and supplements for ruminants. Singapore: Springer; 2024. 143–166. doi:10.1007/978-981-97-0794-2_7.
26.Huang B, Zhang Z, Li C, Liu J, Wang D, Xu S, et al. Enhancing metabolism and milk production performance in periparturient dairy cattle through rumen-protected methionine and choline supplementation. Metabolites. 2023;13(10):1080.
27.Grummer RR. Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Vet J. 2008;176(1):10–20. doi:10.1016/j.tvjl.2007.12.033.
28.Inô CFA, Batista R, Ramos CES, Silva AE, Yamatogi RS, Santos GW, et al. New technology of rumen-protected bypass lysine encapsulated in lipid matrix of beeswax and carnauba wax and natural tannin blended for ruminant diets. Animals. 2024;14(19):2895. doi:10.3390/ani14192895.
29.Girma DD, Tolera A, Tesfaye Y, Angassa A, Faji L, Gashaw G, et al. Effects of close-up dietary energy level and supplementing rumen-protected lysine on energy metabolites and milk production in transition cows. J Dairy Sci. 2019;102(8):7059–7072. doi:10.3168/jds.2018-15962.
30.Xu S, Wang J, Xie J, Li Y, Wu Z, Chen X. The effect of rumen-protected lysine and methionine on milk yield and composition of lactating cows. J Dairy Sci. 1998;81(4):1062–1077. doi:10.3168/jds.S0022-0302(98)75668-1.
31.Morey SD, Mamedova LK, Anderson DE, Armendariz CK, Titgemeyer EC, Bradford BJ. Effects of encapsulated niacin on metabolism and production of periparturient dairy cows. J Dairy Sci. 2011;94(10):5090–5104. doi:10.3168/jds.2011-4304.
32.Panda S, Panda N, Panigrahy KK, Gupta SK, Mishra SP, Laishram M. Role of niacin supplementation in dairy cattle: A review. Asian J Dairy Food Res. 2017;36(2):93–99. doi:10.18805/ajdfr.v36i02.7949.
33. Sammad A, Wang Y, Khan F, Gao J, Pan J, Ali S, et al. Nutritional physiology and biochemistry
of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals.
2020;10(5):793. doi:10.3390/ani10050793.
34. Komisarczuk S, Merry RJ, McAllan AB. Effect of different levels of phosphorus on rumen
microbial fermentation and synthesis determined using a continuous culture technique. Br J Nutr.
1987;57(2):279–290. doi:10.1079/bjn19870033.
35. Goselink RMA, Klop G, Dijkstra J, Bannink A. Phosphorus metabolism in dairy cattle: A literature
study on recent developments and missing links. Wageningen Livest Res. 2015.
36. Haq Z, Irshad S, Khan AA, Ahmad SM, Muzamil S. Advances in managing nitrogen and
phosphorus emissions in ruminants: A holistic approach. In: Latest Scientific Findings in Ruminant
Nutrition-Research for Practical Implementation. IntechOpen; 2024.
37. Pinotti L, Manoni M, Ferrari L, Tretola M, Cazzola R, Givens I. The contribution of dietary
magnesium in farm animals and human nutrition. Nutrients. 2021;13(2):1–15.
doi:10.3390/nu13020509.
38. Foster A, Livesey C, Edwards G. Magnesium disorders in ruminants. In Pract. 2007;29(9):534–
539. doi:10.1136/inpract.29.9.534.
39. Grunes DL. Grass tetany of cattle and sheep. Anti-quality Components of Forages. 1973;4:113–140.
40. Heinrichs AJ, Costello SS, Jones CM. Control of heifer mastitis by nutrition. Vet Microbiol.
2009;134(1–2):172–176. doi:10.1016/j.vetmic.2008.09.025.
41. Chen YH, Chen YM, Tu PA, Lee KH, Chen JY, Hsu JT. Effect of supplementing vitamin E,
selenium, copper, zinc, and manganese during the transition period on dairy cow reproductive
performance and immune function. Vet Sci. 2023;10(3):225. doi:10.3390/vetsci10030225.
42. Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting oxidative stress and the use of organic
selenium in dairy cow nutrition. Animals. 2019;9(7). doi:10.3390/ani9070462.
43. Ammerman CB, Miller SM. Selenium in ruminant nutrition: A review. J Dairy Sci.
1975;58(10):1561–1577. doi:10.3168/jds.S0022-0302(75)84752-7.
44. Sobolev O, et al. Biological role of selenium in the organism of animals and humans. Ukr J Ecol.
2018;8(1):654–665. doi:10.15421/2018_263.
45. Wilkens MR, Nelson CD, Hernandez LL, McArt JAA. Symposium review: Transition cow calcium
homeostasis—Health effects of hypocalcemia and strategies for prevention. J Dairy Sci.
2020;103(3):2909–2927. doi:10.3168/jds.2019-17268.
46. Ibrahim N, Kirmani A. Milk fever in dairy cows: A systematic review. Res J Biol. 2021. Available
from: https://www.rroij.com/peer-reviewed/milk-fever-in-dairy-cows-a-systematic-review-
89219.html
47. Sun X, et al. Effect of diets enriched in n-6 or n-3 fatty acids on dry matter intake, energy balance,
oxidative stress, and milk fat profile of transition cows. J Dairy Sci. 2023;106(8):5416–5432.
doi:10.3168/jds.2022-22540.
48. Gadeyne F, De Neve N, Vlaeminck B, Fievez V. State of the art in rumen lipid protection
technologies and emerging interfacial protein cross-linking methods. Eur J Lipid Sci Technol.
2017;119(5):1600345. doi:10.1002/ejlt.201600345.
49. Manriquez D, Chen L, Melendez P, Pinedo P. The effect of an organic rumen-protected fat supplement
on performance, metabolic status, and health of dairy cows. BMC Vet Res. 2019;15:1–14.
50. Stemme K, Lebzien P, Flachowsky G, Scholz H. The influence of an increased cobalt supply on
ruminal parameters and microbial vitamin B12 synthesis in the rumen of dairy cows. Arch Anim
Nutr. 2008;62(3):207–218. doi:10.1080/17450390802027460.
51. González-Montaña JR, Escalera-Valente F, Alonso AJ, Lomillos JM, Robles R, Alonso ME.
Relationship between vitamin B12 and cobalt metabolism in domestic ruminant: An update.
Animals. 2020;10(10):1–36. doi:10.3390/ani10101855.
52. Câmara ACL, Soto-Blanco B. Metabolic diseases in goats. In: Principles of Goat Disease
Prevention. 2023. 207–220. doi:10.1002/9781119896142.ch16.
53. Pan X, Nan X, Yang L, Jiang L, Xiong B. Thiamine status, metabolism and application in dairy
cows: A review. Br J Nutr. 2018;120(5):491–499. doi:10.1017/S0007114518001666.
54. Hefnawy AEG, Tórtora-Pérez JL. The importance of selenium and the effects of its deficiency in
animal health. Small Rumin Res. 2010;89(2–3):185–192. doi:10.1016/j.smallrumres.2009.12.042.
55. Ojha L, Grewal S, Singh AK, Pal RP, Mir SH. Trace minerals and its role on reproductive
performance of farm animals. J Entomol Zool Stud. 2018;6(4):1406–1409.
56. Rondanelli M, et al. Essentiality of manganese for bone health: An overview and update. Nat Prod
Commun. 2021;16(5):1–8. doi:10.1177/1934578X211016649.
57. Moallem U, Lehrer H, Livshits L, Zachut M. The effects of omega-3 α-linolenic acid from flaxseed
oil supplemented to high-yielding dairy cows on production, health, and fertility. Livest Sci.
2020;242:104302. doi:10.1016/j.livsci.2020.104302.
58. Besharati M, Palangi V, Azhir D, Lackner M. Encapsulation of fatty acids in ruminant nutrition for improved meat and milk quality: A review. Eurobiotech J. 2024;8(4):134–148. doi:10.2478/ebtj-
2024-0013.