The Study of Magnetic Properties and Applications of II–VI Diluted Magnetic Semiconductor, Zn1–xMnxO Nanoparticles

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Applied Nanotechnology
Received Date: 10/08/2024
Acceptance Date: 10/10/2024
Published On: 2024-10-26
First Page: 47
Last Page: 55

Journal Menu

By: Gizachew Diga Milki

Associate Professor, Department of Physics, Jimma University, Ethiopia

Abstract

Ferromagnetism in II-VI diluted magnetic semiconductor, Zn1-xMnxO is studied. The magnetic behavior of this Diluted Magnetic Semiconductor (DMS) is determined by using the Heisenberg and the Green’s formalism. Heisenberg’s Model describes the Hamiltonian of the system in terms of spin density and excitons. In the same way, Green’s theorem is used for calculating magnetic quantities. These theorems are employed to estimate the origin of ferromagnetism in Zn1-xMnxO nanostructures. For spin- spin interactions mediated by carriers, ferromagnetic ordering occurs if the mean distance between Mn-Mn ions is sufficiently less than electron wavelength. The result is compared with experimental values and tested for Mn concentrations greater than 4%. In addition, the stability conditions are stated in terms of giant magneto resistance. Green’s theorem employed enables us to estimate the origin of ferromagnetism and resulting shift in magnetic phases. A calculation of magnetic susceptibility is carried out to verify the existence of ferromagnetism at Curie temperature. The search for the existence of ferromagnetic hysteresis and superparamanetism in Zn1-xMnxO nanoparticles enable us to spot its multifunction. Besides, medical and electronic applications of Zn1-xMnxO is reviewed.

Keywords: Curie temperature, diluted magnetic semiconductors, ferromagnetism, hysteresis curve, magnetic susceptibility, magneto resistance, nanoparticles

Loading

Citation:

How to cite this article: Gizachew Diga Milki, The Study of Magnetic Properties and Applications of II–VI Diluted Magnetic Semiconductor, Zn1–xMnxO Nanoparticles. International Journal of Applied Nanotechnology. 2024; 10(02): 47-55p.

How to cite this URL: Gizachew Diga Milki, The Study of Magnetic Properties and Applications of II–VI Diluted Magnetic Semiconductor, Zn1–xMnxO Nanoparticles. International Journal of Applied Nanotechnology. 2024; 10(02): 47-55p. Available from:https://journalspub.com/publication/ijan/article=11619

Refrences:

1. Dietl T. Diluted magnetic semiconductor. Elsevier. 1994;3:1251–1342.
2. Kossut J. Introduction to Physics of diluted magnetic semiconductor. Springer. 2010, 32/46, 02-668
3. Vladut CM, Mihaiu S, Tenea E, Preda S, Calderon-Moreno JM, Anastasescu M, et al. Optical and piezoelectric properties of Mn doped ZnO films. J Nanomater. 2019;12:1–12. doi: 10.1155/2019/6269145.
4. Sebayang P, Hulu SF, Nasruddin N, Aryanto D, Kurniawan C, Subhan A, et al. Structure, magnetic, and electrical properties of Zn1-xMnxO material. In AIP Conference Proceedings 2017;1862(1). doi: 10.1063/1.1991154
5. Bonifácio MAR, Lira HDL, Neiva LS, Kiminami RHGA. Nanoparticles of ZnO doped with Mn: Structural and morphological characteristics. Mater Res. 2017;20(4):1044–1049. doi: 10.1590/1980-5373-mr-2015-0765.
6. Chavali MS, Nikolova MP. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci. 2019;1(6):607. doi: 10.1007/s 42452-019-0592-3.
7. Kaushik HS, Sharma A, Sharma M. Dilute magnetic semiconductor: a review of theoretical status. International Journal of Engineering and Applied Science. 2014;3(1).
8. Sharma P, Gupta A, Rao KV, Owens FJ, Sharma R, Ahuja R, et al. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater. 2003;2(10):673–677. doi: 10.1038/nmat984.
9. Daksh D, Agrawal YK. Rare earth-doped zinc oxide nanostructures: A review. Rev Nanosci Nanotechnol. 2016;5(1):1–27. doi: 10.1166/rnn.2016.1071.
10. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019–1022. doi: 10.1126/science.287.5455.1019.
11. Lim S, Jeong M, Ham M, Myoung J. Room temperature ferromagnetism in (Mn, N) Co – doped ZnO. JP Appl Phys. 2004;2(43):280.
12. Herng TS, Lau SP, Wei CS, Wang L, Zhao BC, Tanemura M, et al. Stable ferromagnetism in p-type carbon-doped ZnO nanoneedles. Appl Phys Lett. 2009;95(13). doi: 10.1063/1.3238289.
13. Yoon H, Hua Wu J, Hyun Min J, Sung Lee J, Ju JS, Keun Kim Y. Magnetic and optical properties of monosized Eu-doped ZnO nanocrystals from nanoemulsion. J Appl Phys. 2012;111:07B523. doi: 10.1063/1.3676422.
14. Akbar, S., Hasanain, S., Abbas, M., Ozcan, S., Ali, B., & Shah, S. I. (2010). Defect-induced ferromagnetism in carbon-doped ZnO thin films. Solid State Communications, 151(1), 17-20. https://doi.org/10.1016/j.ssc.2010.10.035
15. Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, et al. Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett. 2007;99(12):127201. doi: 10.1103/PhysRevLett.99.127201.
16. Silambarasan M, Saravanan S, Soga T. Mn-doped ZnO nanoparticles prepared by solution combustion method. E-j Surf Sci Nanotechnol. 2014;12:283–288. doi: 10.1380/ejssnt.2014.283.
17. Morkoç H, Özgur Ü. Zinc oxide: Fundamentals, materials and device technology. Wiley. 2009, ISBN: 978-3-527-40813-9
18. Dietl T. Diluted ferromagnetic semiconductors theoretical aspects. In: Handbook of Magnetism and Advanced Magnetic Materials. 2007;5. doi: 10.1002/9780470022184.hmm533.
19. Yu-Feng T, Shu-Jun H, Shi-Shen Y, Liang-Mo M. Oxide magnetic semiconductors, materials and devise. Chinese Phys B. 2013;22(8):088505. doi: 10.1088/1674-1056/22/8/088505.
20. Chattopadhyay S, Neogi SK, Sarkar A, Mukadam MD, Yusuf SM, Banerjee A, et al. Defects induced ferromagnetism in Mn doped ZnO. J Magn Magn Mater. 2010;323(3–4):363–368. Available from: https://www.researchgate.net/publication/47278455_Defects_induced_
ferromagnetism_in_Mn_doped_ZnO
21. El-Hilo M, Dakhel AA. Structural and magnetic properties of Mn-doped ZnO powders. J Magn Magn Mater. 2011;323(16):2202–2205. Available from:https://www.researchgate.
net/publication/241091996_Structural_and_magnetic_properties_of_Mn-doped_ZnO_powders
22. Fleming JA, Dewar J. On the magnetic susceptibility of liquid oxygen. Proceedings of the Royal Society of London; 2017;63:311–319. Available at https://www.semanticscholar.org/paper/On-the-magnetic-susceptibility-of-liquid-oxygen-Fleming-Dewar/05bd9217006b4bd8b57fc76774e
7942d1da66e45
23. Kennedy JF. Pumping liquid oxygen by use of Pulsed magnetic fields. NASA Tech Briefs. 2004:867-8130. Available at https://www.techbriefs.com/component/content/article/29242-ksc12284
24. Norton DP, Pearton SJ, Hebard AF, Theodoropoulou N, Boatner LA, Wilson RG. Ferromagnetism in Mn-implanted ZnO: Sn single crystals. Appl Phys Lett. 2003;82(2):239–241. doi:10.1063/1.1537457.
25. Neal JR, Behan AJ, Ibrahim RM, Blythe HJ, Ziese M, Fox AM, et al. Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys Rev Lett. 2006;96(19):197208. doi: 10.1103/PhysRevLett.96.197208.
26. Dietl T, Ohno OH, Matsukura AF, Cibert J, Ferrand ED. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science. 2000;287(5455):1019–1022. doi: 10.1126/science.287.5455.1019.
27. Kachlishvili ZS. Galvanomagnetic and recombination effects in semiconductors in a strong electric field. Phys Status Solidi A. 1976;33(1):15–51. doi: 10.1002/pssa.2210330102.
28. Drissi LB, Benyoussef A, Saidi EH, Bousmina M. Monte Carlo simulation of magnetic phase transitions in Mn-doped ZnO. J Magn Magn Mater. 2011;323(23):3001–3006. doi: 10.1016/j.jmmm.2011.06.031.