By: Bangshidhar Goswami
Ex-Assistant Professor, Department of Metallurgical Engineering, Ran Vijay Singh College of Engineering and Technology, Jamshedpur, East-Singhbhum, Jharkhand, India.
This study investigates the magnetothermoelectric effects, specifically the Ettingshausen effect, in graphene nanoribbons and iron-carbon alloys and explores their implications in plasma physics through self-similar modeling. The Ettingshausen effect, which involves the generation of a transverse heat current from a longitudinal charge current in the presence of a magnetic field, is analyzed using the Landauer-Büttiker formalism and nonequilibrium Green’s function methods. Results reveal that in graphene nanoribbons, the Ettingshausen effect is highly sensitive to device parameters in weak magnetic fields and shows a strong dependence on the Fermi energy, with significant oscillations observed when the Fermi energy deviates from the Dirac point. Additionally, the study examines the application of magneto-inertial fusion techniques to plasma, where magnetic fields are employed to suppress heat loss and trap alpha particles. Self-similar solutions to the extended Magnetohydrodynamics (MHD) equations reveal the critical roles of the Nernst and Ettingshausen effects in these high-energy environments. Furthermore, the anomalous Ettingshausen effect (AEE) in iron-carbon alloys, including cast irons and steel, is explored, demonstrating that these materials exhibit significantly enhanced thermoelectric properties compared to pure iron, with potential applications in thermal management technologies. This work provides new insights into the behavior of magnetothermoelectric phenomena in advanced materials and their potential for applications in energy conversion and plasma physics.
Citation:
Refrences:
- O’Brien BJ, Wallace CS. Ettingshausen effect and thermomagnetic cooling. J Appl Phys. 1958;29(7):1010–1012. doi:10.1063/1.1723352.
- Wei MM, Zhang YT, Guo AM, Liu JJ, Xing Y, Sun QF. Magnetothermoelectric transport properties of multiterminal graphene nanoribbons. Phys Rev B. 2016;93(24):245432. doi:10.1103/PhysRevB.93.245432.
- Farrow G, Chittenden JP, Kagan G. Self-similar solutions for resistive diffusion, Ohmic heating, and Ettingshausen effects in plasmas of arbitrary β. Phys Plasmas. 2022;29(3):032703. doi:10.1063/5.0082435.
- Seki T, Iguchi R, Takanashi K, Uchida K. Visualization of anomalous Ettingshausen effect in a ferromagnetic film: direct evidence of different symmetry from spin Peltier effect. Appl Phys Lett. 2018;112(15):152403. doi:10.1063/1.5022759.
- Murata M, Nagase K, Aoyama K, Yamamoto A, Sakuraba Y. Prototype fabrication and performance evaluation of a thermoelectric module operating with the Nernst effect. iSci. 2021;24(1):101967. doi:10.1016/isci.2020.101967.
- Rana KG, Dejene FK, Kumar N, Rajamathi CR, Sklarek K, Felser C, Parkin SS. Thermopower and unconventional Nernst effect in the predicted type-II Weyl semimetal WTe2. Nano letters. 2018;18(10):6591–6596. doi:10.1021/acs.nanolett.8b03212.
- Behnia K, Aubin H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep Prog Phys. 2016;79(4):046502. doi:10.1088/0034-4885/79/4/046502.
- Pourret A, Spathis P, Aubin H, Behnia K. Nernst effect as a probe of superconducting fluctuations in disordered thin films. New J Phys. 2009;11(5):055071. doi:10.1088/1367-2630/11/5/055071.
- Kohler M. Wärmeleitung der Metalle im starken magnetfeld. Annalen der Physik. 1949;440(3‐5):181–189. doi:10.1002/andp.19494400306.
- Zhao W, Guo ZX, Cao JX, Ding JW. Enhanced thermoelectric properties of armchair graphene nanoribbons with defects and magnetic field. AIP Adv. 2011;1(4):042135. doi:10.1063/1.3660787.
- Luo R, Legvold TJ, Chen L, Natelson D. Nernst–Ettingshausen effect in thin Pt and W films at low temperatures. Appl Phys Lett. 2023;122(18):182405. doi:10.1063/5.0146427.
- Kalappattil V. Spin Seebeck effect and related phenomena in functional magnetic oxides [Doctoral dissertation]. South Florida, United States: Department of Physics, College of Arts and Sciences, University of South Florida; 2018. 1–24.
- Polash MMH, Vashaee D. Infinite-stage Nernst-Ettingshausen cryocooler for practical applications. Phys Rev Appl. 2021;15(1):014011. doi:10.1103/PhysRevApplied.15.014011.
- Liu XY, Barclay JA, Gopal RB, Földeàki M, Chahine R, Bose TK, Schurer PJ, LaCombe JL. Thermomagnetic properties of amorphous rare‐earth alloys with Fe, Ni, or Co. J Appl Phys. 1996;79(3):1630–1641. doi:10.1063/1.361007.