By: Haydar U. Zaman and Md. Abu Sayed
1Assist. Prof., Department of Physics, National University of Bangladesh Institute of Radiation and Polymer Technology, Bangladesh Atomic Energy Commission, P.O. Box-3787, Savar, Dhaka, Bangladesh
2*Assist. Prof., Department of Chemistry, National University College of Bangladesh
The usage of banana bunch fibers in polymer composite parts for the automotive, aerospace, and construction industries is growing. As people grow more aware of the danger of synthetic fibers, banana bunch fibers are being used in an increasing variety of sectors. It is important to recognize that humans depend on the Earth for survival, not the other way around. This understanding drives scientists and policymakers to seek alternatives to traditional materials, prioritizing environmentally friendly options for a more sustainable future. Better thermomechanical properties, less carbon dioxide emissions, ease of manufacturing, biodegradability and recycling potential, and improved compatibility with human health are just a few of the sustainable features that make banana bunch fibers superior to synthetic materials. As a result, fibers from banana bunches are frequently used to modify polymers. In this study, polypropylene (PP) composites reinforced with banana bunch fiber (BF) were fabricated using compression molding. In some applications, stearic acid (SA) was used as a coupling agent, while in others, it was not applied. Raw banana BF was used to construct composites with filler loading levels ranging from 10 to 40 weight percent. The mechanical properties of the resulting composites were evaluated through a series of tests. Composites reinforced with 30% fiber showed the best mechanical performance based on fiber loading. SA was chemically added to increase banana BF and boost its compatibility with the polymer matrix. When compared to the untreated composites, the mechanical properties of the banana BF-reinforced composites that underwent SA treatment were better. To gain a further understanding of the fiber-matrix adhesion, the researchers utilized scanning electron microscopy (SEM) on the tensile fractured samples. This technique provided detailed images to analyze the interaction between the fibers and the polymer matrix. These photos demonstrated how the SA treatment improved the banana bunch fiber’s adherence to the PP matrix. The composites were also examined for their moisture absorption capacity and their ability to simulate weathering conditions. These tests aimed to assess the durability and environmental resilience of the materials
Keywords: Composite, stearic acid, banana bunch fiber, polypropylene, mechanical properties
Citation:
Refrences:
1. Rana A, Mandal A, Mitra BC, Jacobson RE. Short jute fiber‐reinforced polypropylene composites: Effect of compatibilizer. J Appl Polym Sci. 1998;69(2):329–338. doi: 10.1002/(SICI)1097-4628(19980711)69:2<329::AID-APP14>3.0.CO;2-R.
2. Tajvidi M, Ebrahimi G. Water uptake and mechanical characteristics of natural filler–polypropylene composites. J Appl Polym Sci. 2003;88(4):941–946. doi: 10.1002/app.12029.
3. Zhou XP, Li RKY, Xie XL, Tjong SC. Reinforcement of polypropylene using sisal fibers grafted with poly (methyl methacrylate). J Appl Polym Sci. 2003;88:1055–1064. doi: 10.1002/app.11818.
4. Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Environ Polym Degrad.. 2002;10:19–26. doi: 10.1023/A:1021013921916.
5. Puglia D, Biagiotti J, Kenny JM. A review on natural fibre-based composites-Part II: Application of natural reinforcements in composite materials for automotive industry. J Nat Fibers. 2005;1(3):23–65. doi: 10.1300/J395v01n03_03.
6. Nikmatin S, Hermawan B, Irmansyah I, Indro MN, Sukardan MD, Umam R. Kinematics and dynamics of the ballistic impact behavior for an oil palm empty fruit bunch fiber reinforced bio-composite. Bioresources. 2020;15(3):6123–6134.
7. Zaman HU, Khan MA, Khan RA. Banana fiber-reinforced polypropylene composites: A study of the physico-mechanical properties. Fibers Polym. 2013;14(1):121–126. doi: 10.1007/s12221-013-0121-8.
8. Roy JK, Akter N, Zaman HU, Ashraf KM, Sultana S, Shahruzzaman, et al. Preparation and properties of coir fiber-reinforced ethylene glycol dimethacrylate-based composite. J Thermoplast Compos Mater. 2014;27(1):35–51. doi: 10.1177/0892705712439568.
9. Nourbakhsh A, Ashori A, Tabari HZ, Rezaei F. Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polim Bull. 2010;65(7):691–700. doi: 10.1007/s00289-010-0288-8.
10. Zaman HU, Khan RA, Khan MA, Beg H. Physico-mechanical and degradation properties of biodegradable photografted coir fiber with acrylic monomers. Polim Bull. 2013;70(8):2277–2290. doi: 10.1007/s00289-013-0950-z.
11. Zeng H, Leng J, Gu J, Sun H. Modeling the thermomechanical behaviors of short fiber reinforced shape memory polymer composites. Int J Mech Sci. 2020;166:105212. doi: 10.1016/j.ijmecsci.2019.105212.
12. Hintermann M. Automotive exterior parts from natural fibers. RIKO-2005. 2005.
13. Bledzki AK, Faruk O, Jaszkiewicz A. Cars from renewable materials. Kompozyty. 2010;10:282–288.
14. Kumar S, Misra R. Analysis of banana fibers reinforced low‐density polyethylene/poly (Є‐caprolactone) composites. Soft Mater. 2007;4:1–13. doi: 10.1080/15394450600823040.
15. Venkateshwaran N, Elayaperumal A. Banana fiber reinforced polymer composites-a review. J Reinf Plast Compos. 2010;29(15):2387–2396. doi: 10.1177/0731684409360578.
16. Romero JRR, Albano C, Davidson E, Poleo R. Effects of gamma irradiation on polypropylene, polypropylene+ high density polyethylene and polypropylene+ high density polyethylene+ wood flour. Mater Res Innov. 2001;4(5):294–300. doi: 10.1007/s100190000104.
17. Karian H. Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded. CRC Press; 2003.
18. Herrera-Franco P, Valadez-Gonzalez A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos BEng. 2005;36:597–608. doi: 10.1016/j.compositesb.2005.04.001.
19. Bledzki A, Al-Mamun A, Lucka-Gabor MM, Gutowski V. The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett. 2008;2(6):413–422.
20. Pizzi A, Eaton N. The structure of cellulose by conformational analysis. Part 5. The cellulose Ii water sorption isothermXS. J Macromol Sci Chem. 1987;24:1065–1084.
21. Bledzki A, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24(2):221–274. doi: 10.1016/S0079-6700(98)00018-5.
22. Sreekala M, Thomas S. Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol. 2003;63(6):861–869. doi: 10.1016/S0266-3538(02)00270-1.
23. John MJ, Francis B, Varughese KT, Thomas S. Effect of chemical modification on properties of hybrid fiber biocomposites. Compos – A: Appl Sci Manuf. 2008;39(2):352–363. doi: 10.1016/j.compositesa.2007.10.002.
24. Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J Environ Polym Degrad. 2007;15(1):25–33. doi: 10.1007/s10924-006-0042-3.
25. Kim H, Biswas J, Choe S. Effects of stearic acid coating on zeolite in LDPE, LLDPE, and HDPE composites. Polymer. 2006;47(11):3981–3992. doi: 10.1016/j.polymer.2006.03.068.
26. Bellayer S, Tavard E, Duquesne S, Piechaczyk A, Bourbigot S. Mechanism of intumescence of a polyethylene/calcium carbonate/stearic acid system. Polym Degrad Stab. 2009;94(5):797–803. doi: 10.1016/j.polymdegradstab.2009.01.032.
27. Patil Y, Gajre B, et al. Effect of maleic anhydride treatment on steam and water absorption of wood polymer composites prepared from wheat straw, cane bagasse, and teak wood sawdust using novolac as matrix. J Appl Polym Sci. 2000;77(13):2963–2967. doi: :10.1002/1097-4628(20000923)77:13<2963::AID-APP20>3.0.CO;2-0.
28. Karmaker A, Hoffmann A, Hinrichsen G. Influence of water uptake on the mechanical properties of jute fiber‐reinforced polypropylene. J Appl Polym Sci. 1994;54:1803–1807. doi: 10.1002/APP.1994.070541203.
29. Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM. Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of kenaf fiber-polypropylene composites. Ind Eng Chem Res. 1995;34(5):1889–1896. doi: 10.1021/ie00044a041.
30. Bisanda E, Ansell MP. The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos Sci Technol. 1991;41(2):165–178. doi: 10.1016/0266-3538(91)90026-L.
31. Mwaikambo LY, Martuscelli E, Avella M. Kapok/cotton fabric–polypropylene composites. Polymer Testing. 2000;19(8):905–918. doi: 10.1016/S0142-9418(99)00061-6.
32. Jiang L, Hinrichsen G. Flax and cotton fiber reinforced biodegradable polyester amide composites, 2. Characterization of biodegradation. Angew Makromol Chem. 1999;268:18–21. doi: 10.1002/(SICI)1522-9505(19990701)268:1<18::AID-APMC18>3.0.CO;2-T.
33. Danjaji I, Nawang R, Ismail H, Ishak ZAMM. Degradation studies and moisture uptake of sago-starch-filled linear low-density polyethylene composites. Polym Test. 2002;21(1):75–81. doi: 10.1016/S0142-9418(01)00051-4.
34. Yang H-S, Kim H-J, Park H, Lee B-J. Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Compos Struct. 2006;72:429–437. doi: 10.1016/j.compstruct.2005.01.013.