Journal Menu
By: P. K. Mandal
Assistant Professor, Department of Metallurgical and Materials Engineering, Amal Jyothi College of Engineering, Kanjirappally, Kerala, India
The microalloyed (MA) forging steels have been developed over the past several decades and they are gradually employed in the high-performance applications in many structural, automotive, and numerous engineering applications. The principle of microalloying contents in the Fe–C alloy system, thereby preferably combined with different mechanical, heat treatment, and microalloying solubility control the precipitation behaviors that lead to enormous opportunities to develop a new generation of high strength low alloy (HSLA) steels. Although, alloy chemistry is unexpectedly favorable for preserving high strength and toughness to encourage alloy development point of views, whereas mild C, low S and low P, and valuable minor elements (Cr, Mo, Ni, Cu, and Co) are highly appreciable to enhance mechanical properties. The MA steels rods were cast through melting route and subsequently hot forged then normalized at 950oC and 1100oC, respectively, and then tempered at 600oC to attain optimum hardness of 220HV. Specially, niobium (Nb) offers substantial precipitation strengthening on deformed austenite substructure and suppressing recrystallization, thereby refining the final microstructures and mechanical properties of niobium content MA steels have been investigated and major solubility influenced the precipitating compounds, such as NbC, V (C, N), or TiN, etc. The optimum mechanical properties were obtained after normalizing treatment from 1100oC then immediately fast airdraft cooled likely to YS of 520 MPa, UTS of 660 MPa, ductility of 39.92%, RA of 45.24%, and notable impact energy achieved optimum at room temperature (RT) of 196 J/cm2 and cryogenic treatment (CT) at –20oC of 60 J/cm2, respectively.
Keywords: Impact energy, mechanical properties, MA steels, Niobium, precipitation strengthening, mechanical properties
![]()
Citation:
Refrences:
- Villalobos JC, Del-Pozo A, Campillo B, Mayen J, Serna S. Metals. 2018;8:351. p. 1–49.
- Battacharjee D. Tecnol Metal Mater Miner. 2014;11(4):371–83.
- Huang S, Li Z, Tang H, Zeng Z, Shi Y, Li C. Sci Rep. 2025;15:1–23.
- Kostryzhev AG, Slater CD, Marenych OO, Davis CL. Sci Rep. 2016;6:1–7.
- Mandal P, Chakrabarti D, Ray KK, Chakrabarti AK. Int J Cast Met Res. 2004;17(2):1–5.
- Opiela M, Ozgowicz W. J Achiev Mater Manuf Eng. 2012;55(2):759–71.
- Kumar S, Nath SK. Int J Mater Metall Eng. 2014;8(9):1056–9.
- Muszka K, Majta J, Bienias L. Metall Foundry Eng. 2006;32(2):87–97.
- Lv Z, Ren X, Li Z, Lu Z, Gao M. Mater Res. 2015;18(2):304–12.
- Li Y, Chen Y, Zhou X. Adv Mater Sci Eng. 2020;2020:1–8.
- Joseph JDJ, Aravindh C, Kannan PD, Dineshmuthu M, Kumar JJJ. Int J Eng Res Technol (IJERT). 2018;6(4):1–3.
- Kane SF, Farland AL, Siewert TA, McCowan CN. Weld Res Suppl. 1999 Aug;292–8.
- IIic A, Ivanovic L, Stojanovic B, Josifovic D, Desnica E. Appl Eng Lett. 2018;3(3):98–104.
- Gholap TA, Mohod SA. Int J Adv Res Sci Eng. 2015;4(9):140–9.
- Haribalaji V, Boopathi S, Balamurugan S. Int J Innov Sci Res. 2014;12(1):170–9.
- Sharma R, Singh V, Singh M. Int J Eng Dev Res. 2019;7(4):745–53.
- Qaban A, Naher S. Int J Mech Prod Eng. 2019;7(5):53–6.
- Mohrbacher H, Yang J-R, Chen Y-W, Rehrl J, Hebesbeger T. Metals. 2020;10:504. p. 1–17.
- Ren J, Liu Z. Mater Sci Eng. 2019;611:1–8.
- Huang S, Li W, Lu S, Tian F, Shen J, Holmstrom E, et al. Scr Mater. 2015;108:44–7.
- Marynowski P, Hojny M, Debinski T. Arch Foundry Eng. 2023;23(4):127–36.
- Liu X, Li T, Zhao C, Wang Y. AIP Adv. 2023;13:075317. p. 1–8.
- Gupta RK, Mathew C, Ramkumar P. Front Aerosp Eng. 2015;4(1):1–13.
- Guo Z, Sha W. Mater Trans. 2002;43:1273–82.
- Godefroid LB, Sena BM, Filho VBT. Mater Res. 2016;2016:1–9.
- Adamczyk J. J Achiev Mater Manuf Eng. 2006;14(1–2):9–20.
- Einkhah F, Rassizadehghani J, Najafidejdehmonfared H. Nanotechnol Appl. 2018;1(2):1–5.
- Dua SK, Ray A, Sharma DS. Mater Sci Eng A. 2001;318:197–210.
- Kawabata T, Tadano M, Izumi O. ISIJ Int. 1991;31(10):1161–7.
- Raj A, Goswami B, Kumar SB, Ray AK. High Temp Mater Process. 2013;23(6):517–31.
- Zhao J, Jiang Z, Lee CS. Mater Des. 2013;47:227–33.
- Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int. 2004;44(11):1945–51.
- Cota AB, Goncalves OFL, Barbosa AR, Lacerda CAM, Araujo FGS. Mater Res. 2003;6(2):117–21.
- Liu D, Wang Z, Liu J, Wang Z, Zuo X. Metals. 2022;12:363. p. 1–15.
- Yang L, Xing Y. Mater Res. 2022;25:1–9.
- Rusz S, Cizek L, Filipec P, Pastrnak M. J Mater Manuf Eng. 2008;31(2):356–63.
- Zhang D, Gao X, Wang M, Li W, Guo J, Teng Y, Zhang W. Mater Res Express. 2022;9:1–12.
- Ghosh A, Kundu S, Chakrabarti D. Scr Mater. 2014;81:8–11.
- Manoj MK, Pancholi V, Nath SK. Int J Res Advent Technol. 2014;2(4):243–9.
- Ozgowicz W, Kalinowska-Ozgowicz E. Arch Mater Sci Eng. 2008;32(2):89–94.
- El-Faramawy HS, Ghali SN, Eissa MM. J Miner Mater Charact Eng. 2012;11:1108–12.
- Khodabandeh M, Jahazi M, Yue S, Bocher P. ISIJ Int. 2005;45(2):272–80.
- Aktarer SM, Kucukomeroglu T. J Achiev Mater Manuf Eng. 2016;75(2):55–60.
- Gorka J. Mach Technol Mater. 2013;(12):24–7.
- Musa MHA, Maleque MA, Ali MY. Mater Sci Eng. 2017;184:1–6.
- Ebrahimi GR, Arabshahi H. J Adv Res Mech Eng. 2010;1(4):182–7.
- Babakhani A, Kiani-Rashid AR, Ziaei SMR. Mater Manuf Process. 2012;27(2):135–9.
- Illescas S, Fernandez J, Asensio J, Sanchez-Soto M, Guilemany JM. Rev Metal. 2009;45(6):424–31.
- Skubisz P, Lisiecki L, Skowronek T, Zak A, Zalecki W. Mater Technol. 2016;50(5):783–9.
- Molinari A, Pellizzari M, Gialanella S, Straffelini G, Stiasny KH. J Mater Process Technol. 2001;118:350–5.
- Xu X, Kumar P, Cao R, Ye Q, Chu Y, Tian Y, et al. Acta Mater. 2024;274:1–15.
- Patil PI, Tated RG. In: Int Conf Comput Intell (ICCIA). 2012. p. 10–29.
- Tenduwe OP, Sahu PK, Khunte PL, Kumar N. Int J Eng Res Appl. 2015;5(4 Pt 6):137–42.
- Chen Y, Li Y, Zhou X, Tan F, Jiang Y. Mater Res Express. 2021;8:1–8.

