By: Afaq Khaliq and Muhammad Nabeel Sharif
1. Student, Nano-Scale Physics Laboratory, Department of Physics, Air University, Islamabad, Pakistan
2.Student, Department of Physics, University of Poonch Rawalakot, Rawalakot 12350, Pakistan
Nowadays increasing severity of environmental pollution and antibiotic resistance poses significant global challenges, particularly due to the accumulation of organic pollutants from industrialization and the proliferation of antibiotic-resistant bacteria, which jeopardize ecosystems and public health. To address these issues, the development of advanced nanocomposites with photocatalytic and antimicrobial properties is of paramount importance. This article reports the synthesis of NiCr₂O₄/NiO nanocomposite conducted in the current study via atmospheric pressure microplasma (AMP) electrochemical method. The synthesized nanocomposite’s optical, structural, morphological, and compositional characteristics were thoroughly examined using UV-visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. XRD analysis confirmed the crystalline structure of the nanocomposite, indicating the presence of a cubic spinel phase of NiCr₂O₄ (space group Fd-3m) and a cubic phase of NiO, with a crystallite size of 24.2 nm. SEM analysis demonstrated that nanocomposite exhibited a spherical-like morphology. FTIR spectra showed characteristic metal-oxygen (Ni-O and Cr-O) stretching vibrations at 538 cm⁻¹ and 617 cm⁻¹. UV-visible absorption spectra revealed a broad absorption peak at 377 nm, and the nanomaterial’s optical energy bandgap was estimated to be 2.4 eV. These findings highlight the potential of the NiCr₂O₄/NiO nanocomposite for applications in environmental remediation and antimicrobial treatments.
Keywords: Nickel chromite, atmospheric pressure microplasma, spinel structure
Citation:
Refrences:
1. Arulraj J, Mathew M. Photocatalytic applications of transition metal and metal oxide nanoparticles. International Journal of Advanced Scientific Research and Management. 2019;4(4):389–401.
2. Agnihotri AS, Varghese A, Nidhin M. Transition metal oxides in electrochemical and bio sensing: A state-of-art review. Appl Surf Sci Adv. 2021;4:100072. doi: 10.1016/j.apsadv.2021.100072.
3. Iqbal T, Mukhtar M, Khan MA, Khan R. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest. Mater Res Express. 2016;3(12):125019. doi: 10.1088/2053-1591/3/12/125019.
4. Iqbal T, Aziz A, Khan MA, Andleeb S. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. MSEB. 2018;228:153–159. doi: 10.1016/j.mseb.2017.11.027.
5. Ahuja P, Ujjain SK, Kanojia R, Attri P. Transition metal oxides and their composites for photocatalytic dye degradation. J Compos Sci. 2021;5(3):82. doi: 10.3390/jcs5030082.
6. Danish MSS, Estrella LL, Alemaida IMA, Lisin A, Moiseev N, Ahmadi M, et al. Photocatalytic applications of metal oxides for sustainable environmental remediation. Metals, 2021;11(1):80. doi: 10.3390/met11010080.
7. Shafique M, Iqbal T, Khan MA, Naeem M, Ahmed I, Ahmad P, et al. Structural, optical, electrical, and photocatalytic properties of nickel cobaltite (NiCo2O4) nanocomposite fabricated by a facile microplasma electrochemical process. J Electron Mater. 2021;50:629–639. doi: 10.1007/s11664-020-08573-1.
8. Haider AJ, Al-Anbari R, Sami HM, Haider MJ. Photocatalytic activity of nickel oxide. JMR&T. 2019;8(3):2802–2808. doi: 10.1016/j.jmrt.2019.02.018.
9. Lei Z, Lee JM, Singh G, Sathish CI, Chu X, Al-Muhtaseb AH, et al. Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 2021;36:514–550. doi: 10.1016/j.ensm.2021.01.004.
10. Mei J, Liao T, Ayoko GA, Sun Z. Two-dimensional bismuth oxide heterostructured nanosheets for lithium-and sodium-ion storages. ACS Appl Mater Interfaces. 2019;11(31):28205–28212. doi: 10.1021/acsami.9b09882.
11. Yarbrough R, Davis K, Dawood S, Rathnayake H. A sol–gel synthesis to prepare size and shape-controlled mesoporous nanostructures of binary (II–VI) metal oxides. RSC Adv. 2020;10(24):14134–14146.
12. Sanchez JS, Pendashteh A, Palma J, Anderson M, Marcilla R. Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim Acta. 2018;279:44–56. doi: 10.1016/j.electacta.2018.05.072.
13. Iyer MS, Rajangam I. Hybrid nanostructures made of porous binary transition metal oxides for high performance asymmetric supercapacitor application. Journal of Energy Storage, 2023;67(1):107530. doi: 10.1016/j.est.2023.107530.
14. Liguang W, Changming Z, Zhaoming T, Songliu Y. Exchange bias and training effect in NiCr2O4/Cr2O3 composite. JMR&T. 2015;30(21):3252–3258. doi: 10.1557/jmr.2015.272.
15. Ma J, Ni S, Zhang J, Yang X, Zhang L. The electrochemical performance of nickel chromium oxide as a new anode material for lithium ion batteries. Electrochim Acta. 2015;176:1420–1426. doi: 10.1016/j.electacta.2015.07.071.
16. Javed M, Khan AA, Kazmi J, Mohamed MA, Khan MN, Hussain M, et al. Dielectric relaxation and small polaron hopping transport in sol-gel-derived NiCr2O4 spinel chromite. Mater Res Bull. 2021;138:111242. doi: 10.1016/j.materresbull.2021.111242.
17. Gao H, Guo J, Li Y, Xie C, Li X, Liu L, et al. Highly selective and sensitive xylene gas sensor fabricated from NiO/NiCr2O4 p-p nanoparticles. Sens Actuators B Chem. 2019;284:305–315. doi: 10.1016/j.snb.2018.12.152.
18. Tomar A, Singh J, Singh SP, Rai AK. Designed synthesis of CuCo2O4/CuO nano-composite as a potential anode material for lithium ion batteries. Physica E Low Dimens Syst Nanostruct. 2020;116:113736.
19. Shafique M, Iqbal T, Mahmood H, Khan MA. Surfactant-assisted synthesis of NiCo2O4/NiO nanocomposite by facile atmospheric pressure microplasma electrochemical process with photocatalytic applications. J Mater Sci: Mater Electron. 2021;32(7):17865–17875. doi: 10.1007/s10854-021-06322-6
20. Shobeiri SA, Mousavi-Kamazani M, Beshkar F. Facile mechanical milling synthesis of NiCr2O4 using novel organometallic precursors and investigation of its photocatalytic activity. J Mater Sci: Mater Electron. 2017;28:8108–8115. doi: 10.1007/s10854-017-6517-2.
21. Mojallal S, Mohammadzadeh H, Aghaeinejad-Meybodi A, Jafari R. Effect of NiO–NiCr2O4 nano-oxides on the microstructural, mechanical and corrosion properties of Ni-coated carbon steel. Int J Min Met Mater. 2023;30(6):1078–1092. doi: 10.1007/s12613-022-2584-3.
22. Xu Y, Tian X, Fan Y, Sun Y. A formaldehyde gas sensor with improved gas response and sub-ppm level detection limit based on NiO/NiFe2O4 composite nanotetrahedrons. Sens Actuators B Chem. 2020;309:127719. doi: 10.1016/j.snb.2020.127719.
23. Tuyen TN, Quyen NDV, Lam TB. Synthesis of FexZn1-xCr2O4 brown ceramic pigment by starch-assisted sol-gel process. HUJOS: Nat Sci. 2019;128(1B):13–19. doi: 10.26459/hueuni-jns.v128i1B.5245.
24. Mobini S, Meshkani F, Rezaei M. Surfactant-assisted hydrothermal synthesis of CuCr2O4 spinel catalyst and its application in CO oxidation process. J Environ Chem Eng. 2017;5(5):4906–4916. doi: 10.1016/j.jece.2017.09.027.
25. Mimouni R, Askri B, Larbi T, Amlouk M, Meftah A. Photocatalytic degradation and photo-generated hydrophilicity of methylene blue over ZnO/ZnCr2O4 nanocomposite under stimulated UV light irradiation. Inorg Chem Commun. 2020;115:107889. doi: 10.1016/j.inoche.2020.107889.
26. Namini AS, Delbari SA, Mousavi M, Ghasemi JB. Synthesis and characterization of novel ZnO/NiCr2O4 nanocomposite for water purification by degradation of tetracycline and phenol under visible light irradiation. Mater Res Bull. 2021;139:111247. doi: 10.1016/j.materresbull.2021.111247.
27. Liu Y, Huang M, Zhao J, Lu M, Zhou X, Lin Q, et al. One-pot synthesis of NiO/NiCr2O4 nanostructure as an efficient catalyst for urea electro-oxidation in alkaline media. J Electrochem Soc. 2020;167(6):066520. doi: 10.1149/1945-7111/ab8647.
28. Benrighi Y, Nasrallah N, Chaabane T, Sivasankar V, Darchen A, Baaloudj O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Opt Mater. 2021;115:111035. doi: 10.1016/j.optmat.2021.111035.
29. Mohammed GH, Hassan TB, Abdulhamied ZT. Structural characterization of NiO/Cr2O3 composites and hydrothermal synthesis, properties gas sensing. ANJS. 2018;21(1):59–64. doi: 10.22401/JNUS.21.1.10.
30. Jeba SV, Sebastiammal S, Sonia S, Fathima AL. Synthesis, growth mechanism and photocatalytic properties of nickel oxide (NiO) nanoflower: A hydrothermal process. Inorg Nano-Met Chem. 2020;51(10):1431–1441. doi: 10.1080/24701556.2020.1837163.
31. Al-Hada NM, Al-Ghaili AM, Kasim H, Saleh MA, Baqiah H, Liu J, et al. Nanofabrication of (Cr2O3)x (NiO)1-x and the impact of precursor concentrations on nanoparticles conduct. JMR&T. 2021;11:252–263. doi: 10.1016/j.jmrt.2021.01.007.
32. Al-Hada NM, Kamari HM, Saleh MA, Flaifel MH, Al-Ghaili AM, Kasim H, et al. Morphological, structural and optical behaviour of PVA capped binary (NiO) 0.5 (Cr2O3) 0.5 nanoparticles produced via single step based thermal technique. Results Phys. 2020;17:103059. doi: 10.1016/j.rinp.2020.103059.
33. Govindharaj S, Nizar AM, Akilaa O, Shanmugam R, Thangavelu L. Green synthesis of tannic acid-mediated chromium oxide nanocomposites using acalypha indica and carica papaya leaf and its biomedical applications. Nanotechnol Percept. 2024;20(S7):304–326. doi: 10.62441/nano-ntp.v20iS7.25.
34. Anand GT, Nithiyavathi R, Ramesh R, Sundaram SJ, Kaviyarasu K. Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications. Surfaces and Interfaces. 2020;18(8):100460. doi: 10.1016/j.surfin.2020.100460.
35. Bhardwaj P, Singh J, Kumar R, Kumar R, Verma V. Structural, optical and magnetic characterization of Ni2+ ions doped chromium oxide (Cr2O3) nanoparticles. Solid State Sci. 2021;115:106581. doi: 10.1016/j.solidstatesciences.2021.106581.
36. Khalaji D. Structural, Optical and magnetic studies of Cr2O3 nanoparticles prepared by microwave-assisted. Nanochem Res. 2021;6(1):18–24. doi: 10.1016/j.solidstatesciences.2021.106581.
37. Huang X, Fossati PC, Martinelli L, Bosonnet S, Latu-Romain L, Wouters Y. A DFT study of defects in paramagnetic Cr2O3. Phys Chem Chem Phys. 2022;24(17):10488–10498. doi: 10.1039/d1cp05756a.
38. Patil SP, Chaudhari RY, Nemade MS. Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. Talanta Open. 2022;5:100083. doi: 10.1016/j.talo.2022.100083.
39. Singh J, Kumar R, Verma V, Kumar R. Structural and optoelectronic properties of epitaxial Ni-substituted Cr2O3 thin films for p-type TCO applications. Mater Sci Semicond Process. 2021;123(12pp):105483. doi: 10.1016/j.mssp.2020.105483.
40. Nikolova MP, Chavali MS. Metal oxide nanoparticles as biomedical materials. Biomimetics. 2020;5(2):27. doi: 10.3390/biomimetics5020027.
41. Kirankumar V, Sumathi S. A review on photodegradation of organic pollutants using spinel oxide. Mater Today Chem. 2020;18:100355. doi: 10.1016/j.mtchem.2020.100355.
42. Pei Z, Zheng X, Li Z. Progress on synthesis and applications of Cr2O3 nanoparticles. J Nanosci Nanotechnol. 2016;16(5):4655–4671. doi: 10.1166/jnn.2016.12602.
43. Permatasari TW, Wijaya HW, Taufiq A, Dasna IW. The effect of addition Ni+2 to Cr2O3 and its potential characterization as anode potassium ion battery. J Phys Conf Ser. 2021;1811(1):012032. doi: 10.1088/1742-6596/1811/1/012032.
44. Bakar SA, Soltani N, Yunus WMM, Saion E, Bahrami A. Structural and paramagnetic behavior of spinel NiCr2O4 nanoparticles synthesized by thermal treatment method: Effect of calcination temperature. Solid State Commun. 2014;192:15–19. doi: 10.1016/j.ssc.2014.05.002.
45. Vasil’kov O, Barinova O, Kirsanova S, Marnautov N, Elfimov A. Ceramic black pigments based on chromium-nickel spinel NiCr2O4. GC. 2017;74(8):236–239. doi: 10.1007/s10717-017-9970-8.
46. Wang D, Mi Q, Zhang H, Li G, Zhang D. Sensitive xylene gas sensor based on NiO-NiCo2O4 hierarchical spherical structure constructed with nanorods. IEEE Sensors J. 2022;22(11):10346–10352.
47. Mondal PP, Mahapatra PL, Das S, Saha D. Study on the novel capacitive moisture sensing behaviour of nickel chromite nanoparticle based thick film. Measurement, 2020;163(5):107992. doi: 10.1016/j.measurement.2020.107992.
48. Ragupathi C, Narayanan S, Tamizhdurai P, Govindasamy M, ALOthman ZA, Al-Anazy MM. Tuning magnetic, electronic, and optical properties of Mn-doped NiCr2O4 via microwave method. J Saudi Chem Soc. 2021;25(7):101275. doi: 10.1016/j.jscs.2021.101275.
49. Abbasi A, Khojasteh H, Keihan AH, Adib K, Sobhani-Nasab A, Rahimi-Nasrabadi M. Co-precipitation synthesis of Ag-doped NiCr2O4 nanoparticles: investigation of structural, optical, magnetic, and photocatalytic properties. J Mater Sci: Mater Electron. 2021;32(2):1413–1426. doi: 10.1007/s10854-020-04913-3.
50. Enhessari M, Salehabadi A, Khanahmadzadeh A, Arkat K, Nouri J. Modified sol-gel processing of NiCr2O4 nanoparticles; Structural analysis and optical band gap. HTMP. 2017;36(2):121–125. doi: 10.1515/htmp-2015-0223.
51. Rasool RZ, Nadeem K, Kamran M, Zeb F, Ahmad N, Mumtaz M. Comparison of anomalous magnetic properties of non-collinear CoCr2O4 and NiCr2O4 nanoparticles. J Magn Magn Mater. 2020;514:167225. doi: 10.1016/j.jmmm.2020.167225.
52. Palanisamy G, Kouthaman M, Kandasamy B, Periyasami G, Thangavelu P, Lee J. Rational design of Zn4O (BDC)3 metal organic framework incorporated with NiCr2O4 nanoparticles: An affordable photocatalyst for the degradation of hazardous dyes. J Alloys Compd. 2024;1008:176475. doi: 10.1016/j.jallcom.2024.176475
53. Vinothkumar V, Sekhar YC, Chen S-M, Prasad GV, Kim TH. Fabrication of spinel MCr2O4 (M= Ni and Co) nanostructures as positive electrode materials for high-performance supercapacitors. J Energy Storage. 2024;92:112185. doi: :10.1016/j.est.2024.112185
54. B. de Castilho et al. Short-time exposure oxidation studies on multi-component coatings and their influence on tribological behavior. Wear, 2021;477(7):203892. doi: 10.1016/j.wear.2021.203892.
55. Lin L, Starostin SA, Li S, Hessel V. Synthesis of metallic nanoparticles by microplasma. Phys Sci Rev. 2018;3(10):20170121. doi: 10.1515/psr-2017-0121.
56. Tan HT, Sun W, Wang L, Yan Q. 2D transition metal oxides/hydroxides for energy‐storage applications. ChemNanoMat, 2016;2(7):562–577. doi: 10.1002/cnma.201500177.
57. Nandagudi A, Nagarajarao SH, Santosh MS, M BB. Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications. Mater Today Sustain. 2022;19:100214. doi:
58. Pebley AC. Microplasma jet Synthesis of Ni-Fe oxide films for magnetic exchange bias and electrocatalytic studies. University of California, Santa Barbara, 2017.
59. Geethalakshmi R, Sarada D. Synthesis of plant-mediated silver nanoparticles using Trianthema decandra extract and evaluation of their anti microbial activities. Int J Eng Sci Technol. 2010;2(5):970–975.
60. Kassem MA, El-Fadl AA, Nashaat AM, Nakamura H. Structure, optical and varying magnetic properties of insulating MCr2O4 (M= Co, Zn, Mg and Cd) nanospinels. J Alloys Compd. 2019;790:853–862. doi: 10.1016/j.jallcom.2019.03.189.
61. Mohanty P, Prinsloo A, Sheppard C, Roos W. Effect of Fe substitution on structural and magnetic properties of NiCr₂O₄. APPA. 2018;133(3):574–577. doi: 10.13140/RG.2.2.17589.17125.
62. Mohamed MA, Jaafar J, Ismail A, Othman M, Rahman M. Fourier transform infrared (FTIR) spectroscopy. in Membrane characterization. In book: Membrane Characterization. Elsevier; 2017. pp. 3–29. doi: 10.1016/B978-0-444-63776-5.00001-2.
63. Ali T, Warsi MF, Zulfiqar S, Sami A. Green nickel/nickel oxide nanoparticles for prospective antibacterial and environmental remediation applications. Ceram Int. 2022;48(6):8331–8340. 2022. doi:
64. Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population genomes from metagenome datasets. Microbiome, 2016;4:8. doi: 10.1186/s40168-016-0154-5.
65. Ramesh C, Kumar KM, Latha N, Ragunathan V. Green synthesis of Cr2O3 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Escherichia coli. Curr Nanosci. 2012;8(4):603–607. doi: 10.2174/157341312801784366.
66. Abid M, Schilling J, Scheffran J, Zulfiqar F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci Total Environ. 2016;547:447–460. doi: 0.1016/j.scitotenv.2015.11.125.
67. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B. 2018;180:39–50. doi: 10.1016/j.jphotobiol.2018.01.023.