Royal Jelly: A Brief Review of Nano and Micro Carriers and Potential Applications

Volume: 11 | Issue: 1 | Year 2025 | Subscription
International Journal of Environmental Chemistry
Received Date: 11/09/2024
Acceptance Date: 11/22/2024
Published On: 2025-01-21
First Page: 1
Last Page: 15

Journal Menu

By: Maria Imaculada F. Sousa, Jéssica M. Pereira, Livia Maria S. de Lima, Thaís Karine de L. Rezende, and Anielle Christine A. Silva

Institute of Physics, Federal University of Alagoas, Maceió, Alagoas, Brazil, India.
Chemistry Institute, Uberlândia Federal University, Uberlândia, Minas Gerais, Brazil.
Strategic Materials Laboratory, Institute of Physics, Federal University of Alagoas, Maceió, Alagoas, Brazil.
Rede Nordeste De Biotecnologia (RENORBIO), Chemistry Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil.

Abstract

Royal Jelly, a bioactive substance known for its rich composition of proteins, lipids, and minerals, possesses significant antioxidant, antimicrobial, and anti-inflammatory properties. However, its instability in the presence of light, heat, and oxygen limits its practical applications. Recent advancements in nanotechnology, mainly using nanoparticles combined with microencapsulation techniques, have shown promise in enhancing royal jelly’s stability, bioavailability, and controlled release. This brief review explores encapsulated royal jelly’s biological effects and potential applications across various fields, including pharmaceuticals, cosmetics, and food technology. By integrating royal jelly with nanoparticles, researchers uncover novel approaches to maximize its therapeutic potential, improving efficacy while reducing side effects. This review highlights the key findings from global research, focusing on the synergies between royal jelly and nanoparticles, and discusses the prospects of this innovative combination in biotechnological applications.

Loading

Citation:

How to cite this article: Maria Imaculada F. Sousa, Jéssica M. Pereira, Livia Maria S. de Lima, Thaís Karine de L. Rezende, and Anielle Christine A. Silva, Royal Jelly: A Brief Review of Nano and Micro Carriers and Potential Applications. International Journal of Environmental Chemistry. 2025; 11(1): 1-15p.

How to cite this URL: Maria Imaculada F. Sousa, Jéssica M. Pereira, Livia Maria S. de Lima, Thaís Karine de L. Rezende, and Anielle Christine A. Silva, Royal Jelly: A Brief Review of Nano and Micro Carriers and Potential Applications. International Journal of Environmental Chemistry. 2025; 11(1): 1-15p. Available from:https://journalspub.com/publication/ijec/article=14617

Refrences:

  1. Ghosh S, Jang H, Sun S, Jung C. Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements. 2024;13(12):1942–1942. https://doi.org/10.3390/foods13121942.
  2. Xia Z, Li Y, Liu J, Chen Y, Liu C, Hao Y. CRP and IHF act as host regulators in Royal Jelly’s antibacterial activity. Sci Rep. 2024;14(1). https://doi.org/10.1038/s41598-024-70164-5.
  3. Salahuddin H, Shaiqah M, Afiful Huda AA, Izzuddin M, Nur Shafiq NM, Nur Hakimah M, et al. Screening of electrospray-operating parameters in the production of alginate-royal jelly microbeads using factorial design. J Pharm Bioallied Sci. 2020;12(6):703. https://doi.org/10.4103/jpbs.jpbs_249_19.
  4. Bodade RG, Bodade AG. Microencapsulation of bioactive compounds and enzymes for therapeutic applications. Elsevier E Books. 2020;B9780128168974000175(B9780128168974000175):381–404. https://doi.org/10.1016/b978-0-12-816897-4.00017-5.
  5. Das J, Samadder A, Mondal J, Abraham SK, Khuda Bukhsh AR. Nano-encapsulated chlorophyllin significantly delays progression of lung cancer both in in vitro and in vivo models through activation of mitochondrial signaling cascades and drug-DNA interaction. Environ Toxicol Pharm. 2016;46(S1382668916301843):147–157. https://doi.org/10.1016/j.etap.2016.07.006.
  6. Domingo-Diez J, Souiade L, Manzaneda-González V, Sánchez-Díez M, Megı́as D, Andrés Guerrero-Martínez, et al. Effectiveness of Gold Nanorods of Different Sizes in Photothermal Therapy to Eliminate Melanoma and Glioblastoma Cells. Int J Mole Sci. 2023;24(17):13306–13306. https://doi.org/10.3390/ijms241713306.
  7. Wang J, Liu N, Su Q, Lv Y, Yang C, Zhan H. Green Synthesis of Gold Nanoparticles and Study of Their Inhibitory Effect on Bulk Cancer Cells and Cancer Stem Cells in Breast Carcinoma. 2022;12(19):3324. https://doi.org/10.3390/nano12193324.
  8. Wang B, Cheng ZJ, Xu Q, Zhu T, Su L, Xue M, et al. Dietary Structure and Nutritional Status of Chinese Beekeepers: Demographic Health Survey. JMIR Public Health and Surveill. 2021;7(5): e28726. https://doi.org/10.2196/28726.
  9. Miyata Y, Araki K, Kojiro Ohba, Tomhiro Mastuo, Nakamura Y, Tsutomu Yuno, et al. Oral intake of royal jelly improves anti-cancer effects and suppresses adverse events of molecular targeted therapy by regulating TNF-α and TGF-β in renal cell carcinoma: A preliminary study based on a randomized double-blind clinical trial. Mole Clin Oncol. 2020;10.3892/mco.2020.2099(10.3892/mco.2020.2099). https://doi.org/10.3892/mco.2020.2099.
  10. Pereira KC, Ferreira DCM, Alvarenga GF, Pereira MSS, Barcelos MCS, Costa JMGD. Microencapsulação e liberação controlada por difusão de ingredientes alimentícios produzidos através da secagem por atomização: Revisão. Braz J Food Technol. 2018;21:e2017083 br.
  11. Kim H, Choi H, Kim S, Woo S, Moon H, Han S. Skin Health Improving Effects of Korean Freeze-dried Royal Jelly in Human Keratinocytes. Asian J Beauty and Cosmetol. 2020;18:413–422. https://doi.org/10.20402/ajbc.2020.0056.
  12. He R, Ye J, Wang L, Sun P. Preparation and Evaluation of Microcapsules Encapsulating Royal Jelly Sieve Residue: Flavor and Release Profile. Appl Sci. 2020;10(22):8126. https://doi.org/10.3390/app10228126 (Viatnam).
  13. Khosla A, Gupta SJ, Jain A, Shetty DC, Sharma N. Evaluation and comparison of the antimicrobial activity of royal jelly-A holistic healer against periodontopathic bacteria: An in vitro J Indian Soc Periodontol. 2020;24(3):221–226. https://doi.org/10.4103/jisp.jisp_486_19 Malasia.
  14. Khalifa HAM I, Eleiwa NZH, Nazim HA. Royal Jelly, A Super Food, Protects Against Celecoxib-Induced Renal Toxicity in Adult Male Albino Rats. Canadian J Kidney Health Dis. 2024; 11:20543581241235526. https://doi.org/10.1177/20543581241235526
  15. Endang A, Hasan Z, Andrianto D, Nurfadhilah K. Agrikultura CRI Journal 2 (1) Anticancer Activity of Royal Jelly Apis mellifera Against Widr Cell Line and Hela Cell Line. 2021. https://w3.cbsua.edu.ph/wp-content/uploads/2021/12/3_Anticancer-Activity-of-Royal-jelly-Apis-mellifera-Against-Widr-Cell-Line-and-Hela-Cell-Line.pdf
  16. Álvarez S, Contreras-Kallens P, Aguayo S, Ramírez O, Vallejos C, Ruiz J. Extracellular Vesicles derived from Apis mellifera Royal Jelly promote wound healing by modulating inflammation and cellular responses. 2022, July22. BioRxiv. https://www.biorxiv.org/content/10.1101/2022.07.21.501009v1.abstract.
  17. Spanidi E, Athanasopoulou S, Liakopoulou A, Chaidou A, Hatziantoniou S, Gardikis K. Royal Jelly Components Encapsulation in a Controlled Release System-Skin Functionality, and Biochemical Activity for Skin Applications. 2022;15(8):907. https://doi.org/10.3390/ph15080907 Grecia.
  18. Matuszewska E, Klupczynska A, Maciołek K, Kokot ZJ, Matysiak J. Multielemental Analysis of Bee Pollen, Propolis, and Royal Jelly Collected in West-Central Poland. 2021;26(9):2415. https://doi.org/10.3390/molecules26092415 polonia novo.
  19. Hossein Pourmobini, Arababadi MK, Salahshoor MR, Shiva Roshankhah, Taghavi MM, Zahra Taghipour, et al. The effect of royal jelly and silver nanoparticles on liver and kidney inflammation. Avicenna J Phytomed. 2021;11(3):218. https://pmc.ncbi.nlm.nih.gov/articles/PMC8140212/.
  20. Shakib Khoob M, Hosseini SM, Kazemi S. In Vitro and In Vivo Antioxidant and Anticancer Potentials of Royal Jelly for Dimethylhydrazine-Induced Colorectal Cancer in Wistar Rats. Oxidative Med Cell Longev. 2022;(10.1155/2022/9506026):1–11. https://doi.org/10.1155/2022/9506026.
  21. Perminaitė K, Marksa M, Ivanauskas L, Inkėnienė AM, Grigonis A, Ramanauskienė K. Lithuanian Royal jelly: Quality assessment, biological activity and quantitative determination of trans-10-hydroxy-2-decenoic acid in various solvents. 2020;31(3): https://doi.org/10.6001/chemija.v31i3.4290 iran.
  22. Jafari A, Nemati M, Zahra Lorigooini, Yazdani M, Salehi M, Soleiman Kheiri, et al. The impact of Royal Jelly on In-Vitro Fertilization outcome in low ovarian reserve women, a randomized clinical trial. Res Sq (Research Square); 2023. https://doi.org/10.21203/rs.3.rs-3146472/v1 I
  23. Mokaya HO, Njeru LK, Lattorff HMG. African honeybee royal jelly: Phytochemical contents, free radical scavenging activity, and physicochemical properties. Food Biosci. 2020;37(S2212429220310713):100733. https://doi.org/10.1016/j.fbio.2020.100733
  24. Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, et al. Active components and biological functions of royal jelly. J Funct Foods. 20231;82(S1756464621001638):104514. https://doi.org/10.1016/j.jff.2021.104514
  25. Dong S, Huang Y, Yan H, Tan H, Fan L, Chao M, et al. Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy. J Nanobiotechnol. 2024;22(1). https://doi.org/10.1186/s12951-024-02530-4
  26. Wu Y, Zheng Y, Hongmei Li-Byarlay, Shi Y, Wang S, Zheng H, et al. CYP6AS8, a cytochrome P450, is associated with the 10-HDA biosynthesis in honey bee (Apis mellifera) workers. 2020;51(6):1202–1212. https://doi.org/10.1007/s13592-019-00709-5.
  27. Lin X, Liu S, Luo Y, Xu W, Zhang Y, Zhang T, et al. 10-HDA Induces ROS-Mediated Apoptosis in A549 Human Lung Cancer Cells by Regulating the MAPK, STAT3, NF-κB, and TGF-β1 Signaling Pathways. Bio Med Res Int. 2020;(10.1155/2020/3042636):1–15. https://doi.org/10.1155/2020/3042636.
  28. Wang H, Deng H, Gao M, Zhang W. Elf-assembled nanogels based on ionic gelation of natural polysaccharides for drug delivery. Front Bioeng Biotechnol. 2021;9:703559. https://www.frontiersin.org/journals/bioengineering and biotechnology/articles/10.3389/ fbioe.2021.703559/full.
  29. Yoon K, Jung S, Ryu J, Park HJ, Oh HK, Kook MS. Redox-Sensitive Delivery of Doxorubicin from Nanoparticles of Poly(ethylene glycol)-Chitosan Copolymer for Treatment of Drug-Resistant Oral Cancer Cells. Int J Mol Sci. 2023;24(18):13704–13704. https://doi.org/10.3390/ijms241813704.
  30. Uthaibutra V, Kaewkod T, Prapawilai P, Pandith H, Tragoolpua Y. Inhibition of Skin Pathogenic Bacteria, Antioxidant and Anti-Inflammatory Activity of Royal Jelly from Northern Thailand. 2023;28(3):996. https://doi.org/10.3390/molecules28030996 Tailandia.
  31. Nainu F, Masyita A, Bahar Muh A, Raihan M, Prova SR, Mitra S, et al. Pharmaceutical Prospects of Bee Products: Special Focus on Anticancer, Antibacterial, Antiviral, and Antiparasitic Properties. Antibiotics. 2021;10(7):822. https://doi.org/10.3390/antibiotics10070822
  32. El-Guendouz S, Machado AM, Aazza S, Lyoussi B, Miguel MG, Mateus MC, et al. Chemical Characterization and Biological Properties of Royal Jelly Samples From the Mediterranean Area. Nat Prod Commun. 2020;15(2):1934578X2090808. https://doi.org/10.1177/1934578×20908080.
  33. Tohamy HG, El-Neweshy, MS Mohamed Mohamed Soliman, Sayed S, Mustafa Shukry, Ghamry HI, et al. Protective potential of royal jelly against hydroxyurea-induced hepatic injury in rats via antioxidant, anti-inflammatory, and anti-apoptosis properties. PloS One. 2022;17(3):e0265261–e0265261. https://doi.org/10.1371/journal.pone.0265261.
  34. Neslihan Ulubayram, Cinar AY. Microencapsulated and Fresh Royal Jelly: Monitoring 10-HDA Content, Antibacterial and Antifungal Activity at Different Storage Periods. Brazilian Archives of Biol Technol. 2023;66(10.1590/1678–4324-2023220203). https://doi.org/10.1590/1678-4324-2023220203.
  35. Ramírez O, Simón Álvarez, Pamina Contreras-Kallens, Barrera NP, Aguayo S, Schuh C. Type I collagen hydrogels as a delivery matrix for royal jelly derived extracellular vesicles. Drug Delivery. 2020;27(1):1308–1318. https://doi.org/10.1080/10717544.2020.1818880.
  36. Azhar MF, Hamdi NAM, Haris MS. Stability study of royal jelly in alginate-pectin beads. J Pharm. 2023;3(1):38–52. https://doi.org/10.31436/jop.v3i1.191.
  37. Issa AA, Maraie NK. Yashwant Yashwant Site-Your Super-powered WP Engine Site. Impactfactor.org. 2022. https://impactfactor.org/PDF/IJDDT/12/IJDDT.
  38. Asadi S, Tayyebeh Madrakian, Ahmadi M, Aguirre MÁ, Abbas Afkhami, Seyed Sepehr Uroomiye, et al. Aerosol assisted synthesis of a pH responsive curcumin anticancer drug nanocarrier using chitosan and alginate natural polymers. Sci Rep. 2023;13(1). https://doi.org/10.1038/s41598-023-46904-4.
  39. Kocharyan M, Syuzan Marutyan, Edita Nadiryan, Mikayel Ginovyan, Hayarpi Javrushyan, Seda Marutyan, et al. Royal Jelly-Mediated Silver Nanoparticles Show Promising Anticancer Effect on HeLa and A549 Cells Through Modulation of the VEGFa/PI3K/Akt/MMP‐2 Pathway. Appl Organomet Chem. 2024. doi/abs/10.1002/aoc.7726(10.1002/aoc.7726). https://doi.org/10.1002/aoc.7726.
  40. Al-Hatamleh MAI, Alshaer W, Hatmal MMM, Lambuk L. Applications of alginate-based nanomaterials in enhancing the therapeutic effects of bee products. Front Mol Biosci. https://www.frontiersin.org/journals/molecularbiosciences/articles/10.3389/fmolb.2022;865833/full.
  41. Gevorgyan S, Schubert R, Falke S, Lorenzen K, Trchounian K, Betzel C. Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract. Sci Rep. 2022;12(1):14077. https://doi.org/10.1038/s41598-022-17929-y
  42. Bildir B, Demirkan Z, Kaya B. Ari Ekmeği İle Demir Nanopartiküllerinin Biyosentezi, Karakterizasyonu Ve Güneş Koruma Faktörünün (SPF) Belirlenmesi. Türk Doğa ve Fen Dergisi. 2022;72793/1159727(72793/1159727). https://doi.org/10.46810/tdfd.1159727.
  43. Beldarraín-Iznaga T, Villalobos-Carvajal R, Leiva-Vega J, Eva Sevillano Armesto. Influence of multilayer microencapsulation on the viability of Lactobacillus casei using a combined double emulsion and ionic gelation approach. Food Bioprod Process. 20230;124(S0960308520304946): 57–71. https://doi.org/10.1016/j.fbp.2020.08.009.
  44. Fleten KG, Hyldbakk A, Einen C, Benjakul S, Strand BL, Davies C. et al. Alginate Microsphere Encapsulation of Drug-Loaded Nanoparticles: A Novel Strategy for Intraperitoneal Drug Delivery. Marine Drugs. 2022;20(12):744. https://doi.org/10.3390/md20120744.
  45. Nadjet Djihad, Fadloun Oukil Naima, Sílvia Petronilho, Hamid S, Nasri F, Coimbra MA. Microencapsulation of Citrus limon essential oil by complex coacervation and release behavior of terpenic and derived volatile compounds. Food Hydrocoll. 2024;152(S0268005X24001048):109830-109830. https://doi.org/10.1016/j.foodhyd.2024.109830.
  46. Motalebi Moghanjougi Z, Rezazadeh Bari M, Alizadeh Khaledabad M, Amiri S, Almasi H. Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Sci & Nutr. 2021;9(9):5103–5111. https://doi.org/10.1002/fsn3.2470.
  47. Kowalska G, Rosicka-Kaczmarek J, Miśkiewicz K, Zakłos-Szyda M, Rohn S, Kanzler C, et al. Arabinoxylan-Based Microcapsules Being Loaded with Bee Products as Bioactive Food Components Are Able to Modulate the Cell Migration and Inflammatory Response-In Vitro Study. Nutr. 2022;14(12):2529. https://doi.org/10.3390/nu14122529.
  48. Samaratunga R, Kantono K, Kam R, Swapna Gannabathula, Hamid N. Microencapsulated Asiatic Pennywort (Centella asiatica) fortified chocolate oat milk beverage: Formulation, polyphenols content, and consumer acceptability. J Food Sci. 2024;89(9):5395–5410. https://doi.org/10.1111/1750-3841.17277.
  49. Guerra-Valle M, Petzold G, Orellana-Palma P. Optimization of Encapsulation by Ionic Gelation Technique of Cryoconcentrated Solution: A Response Surface Methodology and Evaluation of Physicochemical Characteristics Study. Polym. 2022;14(5):1031. https://doi.org/10.3390/polym14051031.
  50. Lopez-Sanchez P, Assifaoui A, Cousin F, Moser J, Bonilla MR, Ström A. Impact of Glucose on the Nanostructure and Mechanical Properties of Calcium-Alginate Hydrogels. Gels. 2022;8(2):71. https://doi.org/10.3390/gels8020071.
  51. Astutiningsih F, Anggrahini S, Fitriani A, Supriyadi S. Optimization of Saffron Essential Oil Nanoparticles Using Chitosan-Arabic Gum Complex Nanocarrier with Ionic Gelation Method. Int J Food Sci. 2022;(10.1155/2022/4035033):1–14. https://doi.org/10.1155/2022/4035033.
  52. Mohammed A, Gaduan A, Chaitram P, Pooran A, Lee KY, Ward K. Sargassum inspired, optimized calcium alginate bioplastic composites for food packaging. Food Hydrocoll. 2023;135(S0268005X22007123):108192. https://doi.org/10.1016/j.foodhyd.2022.108192.
  53. Fathi F, Saberi-Riseh R, Khodaygan P. Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. Int J Biol Macromol. 2021;183(S0141813021009326):627–634. https://doi.org/10.1016/j.ijbiomac.2021.04.159.
  54. Thanh Uyen NT, Abdul Hamid ZA, Thi LA, Ahmad NB. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol. 2020;58(S1773224720303919):101796. https://doi.org/10.1016/j.jddst.2020.101796.
  55. Inés Cea-Pavez, Manteca-Bautista D, Morillo-Gomar A, Quirantes-Piné R, Quiles JL. Influence of the Encapsulating Agent on the Bioaccessibility of Phenolic Compounds from Microencapsulated Propolis Extract during In Vitro Gastrointestinal Digestion. Foods. 2024;13(3):425–425. https://doi.org/10.3390/foods13030425.
  56. Sanfelice RC, Pavinatto A, Correa DS. Nanotecnologia aplicada a polímeros. Embrapa.br. 2022; 1(1148352). https://doi.org/978-65-5550-252-7%20eletr%C3%B4nico.
  57. Hens Z, De Roo J. Atomically Precise Nanocrystals. J Am Chem Soc. 2020;142(37):15627–15637. https://doi.org/10.1021/jacs.0c05082.
  58. Shi Y, Van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10(17):7921–7924. https://doi.org/10.7150/thno.49577.
  59. Sayed MA, El-Zeiny HM, Khim JS, Ajarem JS, Allam AA, Abukhadra MR. Insight into the Loading Properties of Na+ Green-Functionalized Clinoptilolite as a Potential Carrier for the 5–Fluorouracil Drug, its Release Kinetics, and Cytotoxicity. ACS Omega. 2022;7(8):6991–7001. https://doi.org/10.1021/acsomega.1c06671.
  60. Bari E, Ferrera F, Tiziana Altosole, Perteghella S, Mauri P, Rossi R, et al. Trojan-horse silk fibroin nanocarriers loaded with a re-call antigen to redirect immunity against cancer. J Immuno Therapy 2023;11(1):e005916–e005916. https://doi.org/10.1136/jitc-2022-005916.
  61. Gupta N, Gupta GD, Razdan K, Albekairi NA, Alshammari A, Singh D. Development of nanoemulgel of 5-Fluorouracil for skin melanoma using glycyrrhizin as a penetration enhancer. Saudi Pharm J. 2024;32(4):101999. https://doi.org/10.1016/j.jsps.2024.101999.
  62. Alkanawati MS, Da Costa Marques R, Mailänder V, Landfester K, Thérien-Aubin H. Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their Use as Responsive Delivery Systems. Biomacromol. 2020;21(7):2764–2771. https://doi.org/10.1021/acs.biomac.0c00492.
  63. Hano C, Abbasi BH. Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications. Biomol. 2021;12(1):31. https://doi.org/10.3390/biom12010031.