Comparative Study of Bioethanol Production from Mixed Floral Wastes by Pichia kudriavzevii CY 902 and Saccharomyces cerevisiae 13122

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Industrial Biotechnology and Biomaterials
Received Date: 11/18/2024
Acceptance Date: 12/02/2024
Published On: 2024-12-19
First Page: 34
Last Page: 45

Journal Menu

By: Shalini Rachel and M. Shailaja Raj

Abstract

Ever since ethanol has proved to be an alternative to fuel, various sources are explored to enhance its production. Thus far, starch and sugar containing substrates, such as sugarcane and corn are employed for commercial production of ethanol resulting in an imbalance in the industrial and domestic supply of sugars causing an impact on their prices. Therefore, this study investigated the potential of mixed floral wastes as a cheaper alternative for production of ethanol. Yeast isolated from sugarcane juice and identified as Pichia kudriavzevii CY 902 was used for fermentation. Growth and cultural characteristics were optimized for incubation period (48hrs), temperature (37℃), pH (5.5), osmotolerance (20%), and alcohol tolerance (10%). The culture could strongly ferment and assimilate carbohydrates, such as glucose, fructose, and sucrose. Comparative studies showed, Pichia kudriavzevii CY 902 had 59% more invertase activity (308.6 IU/min/ml) and could yield 17.51% (99.6 g/L/g) more amount of bioethanol as compared to Saccharomyces cerevisiae 13122 (82.16 g/L/g) after 96hrs of fermentation at 37°C and pH 5.5. The study thereby demonstrates the appropriateness of Pichia kudriavzevii CY 902 as a potent stress tolerant strain for commercial production of bioethanol.

Keywords: Bioethanol, fermentation, mixed floral wastes, Pichia kuridavzevii CY 902, Saccharomyces cerevisiae

Loading

Citation:

How to cite this article: Shalini Rachel and M. Shailaja Raj, Comparative Study of Bioethanol Production from Mixed Floral Wastes by Pichia kudriavzevii CY 902 and Saccharomyces cerevisiae 13122. International Journal of Industrial Biotechnology and Biomaterials. 2024; 10(02): 34-45p.

How to cite this URL: Shalini Rachel and M. Shailaja Raj, Comparative Study of Bioethanol Production from Mixed Floral Wastes by Pichia kudriavzevii CY 902 and Saccharomyces cerevisiae 13122. International Journal of Industrial Biotechnology and Biomaterials. 2024; 10(02): 34-45p. Available from:https://journalspub.com/publication/ijibb/article=13227

Refrences:

1. Chanthakett A, Arif MT, Khan MMK, Subhani M. Hydrogen production from municipal solid waste using gasification method. In: Hydrogen Energy Conversion and Management. 2024. pp. 103–131. doi: 10.1016/B978-0-443-15329-7.00012-0.
2. Gosh P, Ghose T. Bioethanol in India: Recent past and emerging future. Adv Biochem Engin/biotechnol. 2003;85:1–27. doi: 10.1007/3-540-36466-8_1.
3. Devi A, Singh A, Bajar S, Pant D, Ud Din Z. Ethanol from lignocellulosic biomass: An in-depth analysis of pre- treatment methods, fermentation approaches and detoxification pro-cesses. J Env Chem Engin. 2021;9(5):105798. doi: 10.1016/j.jece.2021.105798.
4. Petroleum planning and analysis cell (PPAC), Ministry of petroleum and natural gas, Gov-ernment of India.
5. Anumala NV, Kumar R. Floriculture sector in India: current status and export potential. J Horticultural Sci Biotechnol. 2021;96(5):673–680. doi: 10.1080/14620316.2021.1902863q/.
6. Harisha BN. An economic analysis of floriculture in India. Int J Acad Res Develop. 2017;2:225–231.
7. Waghmode M, Gunjal A, Nawani N, Patil N. Management of floral waste by conversion to value-added products and their other applications. Waste Biomass Valori. 2018;9(1):33–43. doi: 10.1007/s12649-016- 9763-2.
8. Mohanty SK, Behera S, Swain MR, Ray RC. Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation. Appl Energy. 2009;86(5):640–644. doi: 10.1016/j.apenergy.2008.08.022.
9. Doda S, Sahu O. Production of bioethanol from biomass (Marigold flower). Mater Today Proc. 2022;48(Part 5):932–937. doi: 10.1016/j.matpr.2021.05.309.
10. Khammee P, Unpaprom Y, Chaichompoo C, Khonkaen P, Ramaraj R. Appropriateness of waste jasmine flower for bioethanol conversion with enzymatic hydrolysis: Sustainable de-velopment on green fuel production. Springer, 3 Biotech. 2021;11. doi: 10.1007/s13205-021-02776-x.
11. Sahu O. Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production. Energy. 2021;232:120922. doi: 10.1016/j.energy.2021.120922.
12. Umeh SO, Agwuna LC, Okafor UC. Yeasts from Local Sources: An Alternative to the con-ventional brewer’s yeast. World Wide J Multidiscip Res. 2017;3(10):191–195.
13. Pinu FR, Edwards PJB, Gardner RC, Villas-Boas SG. Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation. FEMS Yeast Res. 2014;14(8):1206–1222. doi: 10.1111/1567-1364.12222.
14. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic character-ization and maintenance of yeasts. The Yeasts (Fifth Edition). 2011:87–110. doi: 10.1016/B978-0-444- 52149-1.00007-0.
15. Hopkins JM, Land GA. Rapid method for determining nitrate utilization by yeasts. J Clin Microbiol. 1977;5(4):497–500. doi: 10.1128/jcm.5.4.497-500.1977.
16. Williams D, Munnecke DM. Production of ethanol by immobilised yeast cells. Biotechnol Bieng. 1981;XXIII:1813–1825. doi: 10.1002/bit.260230809.
17. Shankar T, Thangamathi P, Rama R, Sivakumar T. Response surface methodology (Rsm) – Statistical analysis for invertase production by S. Cerevisiae MK. Middle East J Sci Res. 2013;18(5):615–622. doi: 10.5829/idosi.mejsr.2013.18.5.11726.
18. Saini JK, Saini R, Tewari L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech. 2015;5:337–353. doi: 10.1007/s13205-014-0246-5.
19. Bhosale J, Economic Times. Domestic sugar price increase slows down pace of India’s sug-ar export deals. By: ET BureauLast Updated: September 9, 2021.
20. Nandini, Jayaswal R. G20 Summit: India, US, Brazil in global biofuel push. Hindustan Times, September, 10, 2023.
21. Waghmode M, Gunjal A, Nawani N, Patil N. Management of floral waste by conversion to value-added products and their other applications.  Waste Biomass Valori. 2018;9(1):33–43. doi: 10.1007/s12649-016-9763-2.
22. Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production. Current status, Appl Microbiol Biotechnol. 2003;63:258–266.
23. Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, de Waal PP, et al. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Research. 2017;17(5):fox044. doi: 10.1093/femsyr/fox044.
24. Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, et al. Genome-wide identification of genes involved in tolerance to various environmen-tal stresses in Saccharomyces cerevisiae. J Appl Genet. 2009;50(3):301–310. doi:10.1007/BF03195688.
25. Yuan S-F, Guo G-L, Hwang W-S. Ethanol production from dilute-acid steam exploded lig-nocellulosic feedstocks using an isolated multistress-tolerant Pichia kudriavzevii strain. Mi-crob Bioetchnol. 2017. doi: 10.1111/1751-7915.12712.
26. Choi D-H, Park EH, Kim MD. Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Sci Biotechnol. 2017;26(5):1357–1362. doi: 10.1007/s10068-017-0155-6.
27. Nweze JE, Ndubuisi I, Murata Y, Omae H,  Ogbonna JC. Isolation and evaluation of xy-lose-fermenting thermotolerant yeasts for bioethanol production. Biofuels. 2019;12(8). doi: 10.1080/17597269.2018.1564480.
28. Qvirist L, Vorontsov E, Vilg JV, Andlid T. Strain improvement of Pichia kudriavzevii TY13 for raised phytase production and reduced phosphate repression. Microb Biotechnol. 2016;10(2):341–353. doi: 10.1111/1751-7915.12427.
29. Xi Y, Zhan T, Xu H, Chen J, Bi C, Fan F, et al. Characterization of JEN family carboxylate transporters from the acid‐tolerant yeast Pichia kudriavzevii and their applications in suc-cinic acid production. Microb Biotechnol. 2021;14(3):1130–1147. doi: 10.1111/1751-7915.13781.
30. Pongcharoena P, Tawonga W, Kucharoenpsaibul S. Enhanced high temperature ethanol production using newly isolated thermotolerant yeast Pichia kudriavzevii NUPHS from Thailand. Science Asia. 2021;47:47–56. doi: 10.2306/scienceasia1513-1874.2021.009.
31. Ulya D, Astuti R, Meryandini A. The ethanol production activity of indigenous thermotoler-ant yeast pichia kudriavzevii 1P4. Microbiol Indones. 2020;14(4). doi: 10.5454/mi.14.4.x.
32. Kitichantaropas Y, Boonchird C, Sugiyama M, Kaneko Y, Harashima S, Auesukaree C. Cel-lular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Expr. 2016;6:107. doi: 10.1186/s13568-016-0285-x.
33. Salas-Navarrete PC, de Oca Miranda AIM, Martínez A, Caspeta L. Evolutionary and reverse engineering to increase Saccharomyces cerevisiae tolerance to acetic acid, acidic pH, and high temperature. Appl Microbiol Biotechnol. 2022;106:383–399. doi: 10.1007/s00253-021-11730-z.
34. Díaz-Nava LE, Montes-Garcia N, Domínguez JM, Aguilar-Uscanga MG. Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess Biosyst Eng. 2017;40:1069–1077. doi: 10.1007/s00449-017-1769- z.
35. Rahmadhan NI, Astuti RI, Meryandini A. Substrate utilization of ethanologenic yeasts co-cultivation of Pichia kudriavzevii and Saccharomyces cerevisiae. The 3rd International Conference on Biosciences IOP Publishing IOP Conf. Series: Earth and Environmental Sci-ence 2020;457:012072. doi:10.1088/1755-1315/457/1/012072.
36. Koutinas M, Patsalou M, Stavrinou S, Vyrides I. High temperature alcoholic fermentation of orange peel by the newly isolated thermotolerant Pichia kudriavzevii KVMP10. Lett Appl Microbiol. 2015;62:75– 83. The Society for Applied Microbiology. doi: 10.1111/lam.12514.
37. Sandhu SK, Oberoi HS, Dhaliwal SS, Babbar N, Kaur U, Nanda D, et al. Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fer-mentation using crude enzyme produced by Aspergillus oryzae and the thermotolerant Pich-ia kudriavzevii strain. Anal Microbiol. 2012;62:655–666. doi: https://doi.org/10.1007/s13213-011-0302-x.
38. Lata P, Kumari R, Sharma KB, Rangra S, Savitri. In vitro evaluation of probiotic potential and enzymatic profiling of Pichia kudriavzevii Y33 isolated from traditional home-made mango pickle. J Genet Eng Biotechnol. 2022; 20(1):132. doi: 10.1186/s43141-022-00416-2.
39. Oberoi HS, Babbar N, Sandhu SK, Dhaliwal SS, Kaur U, Chadha BS, et al. Ethanol produc-tion from alkali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1. J Ind Microbiol Biotechnol. 2012;39(4):557–566. doi: 10.1007/s10295-011-1060-2.
40. Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 2013;3. doi: 10.1186/2191-0855-3-31.
41. Murata Y, Nwuche CO, Nweze JE, Ndubuisi IA, Ogbonna JC. Potentials of multi-stress tol-erant yeasts, Saccharomyces cerevisiae and Pichia kudriavzevii for fuel ethanol production from industrial cassava wastes. Process Biochem.  2021;111(Part 2):305–314. doi: 10.1016/j.procbio.2021.11.014.
42. Pongcharoen P, Chawneua J, Tawong W. High temperature alcoholic fermentation by new thermotolerant yeast strains Pichia kudriavzevii isolated from sugarcane field soil. Agricul-ture and Natural Resources. 2018;52(6):511–518.
43. Nieto-Sarabia VL, Ballinas-Cesatti CB, Melgar-Lalanne G, Cristiani–Urbina E, Morales-Barrera L. Isolation, identification, and kinetic and thermodynamic characterization of a Pichia kudriavzevii yeast strain capable of fermentation. Food Bioprod Process. 2022;131:109–124.  doi: 10.1016/j.fbp.2021.10.013.
44. Hoppert L, Kölling R, Einfalt D. Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam–exploded wheat straw hydrolysate. Biore-sour Technol. 2022;364:128079, doi: 10.1016/j.biortech.2022.128079.
45. Pongcharoen P. The ability of Pichia kudriavzevii to tolerate multiple stresses makes it promising for developing improved bioethanol production processes. Lett Appl Microbiol. 2022;75(1):36–44. doi: 10.1111/lam.13703.
46. Persson M, Galbe MM, Wallberg O. A strategy for synergistic ethanol yield and improved production predictability through blending feedstocks. Biotechnol Biofuels. 2020;13(1). doi: 10.1186/s13068-020-01791-z.
47. Rana V, Eckard AD, Ahring BK. Comparison of SHF and SSF of wet exploded corn stover and loblolly pine using in-house enzymes produced from T. reesei RUT C30 and A. sac-charolyticu. SpringerPlus. 2014;3:516. doi: 10.1186/2193-1801-3-516.
48. Behera S, Ray RC, Mohanty RC. Comparative study of bioethanol production from mahula (Madhuca latifolia L.) flowers by immobilized cells of Saccharomyces cerevisiae and Zy-momonas mobilis in calcium alginate beads. J Sci Ind Res. 2010;69(06):472–475.
49. Rekha YGG, Vijayalakshmi S. Production and optimization techniques of bioethanol from withered flowers of Allamanda schottii L. by activated dry yeast. J Pure Appl Microbi-ol. 2018;12(2):943–952. doi: 10.22207/JPaM.12.2.57.
50. Banerjee T, Samanta A. Improvement over traditional brewing techniques for production of bioethanol from Mahua flowers (Madhuca indica). Int J Eng Sci Math. 2018;7(4):12–21.
51. Agrawal T, Quraishi A, Kumar S. Bioethanol production from Madhuca latifolia L. flowers by a newly isolated strain of Pichia kudriavzevii. Energy Environ. 2019;30(8). doi: 10.1177/0958305X19852475.
52. Nugrahini AD, Kurniawan MP, Kinasih DA. Development of lignocellulose-based bioetha-nol from chrysanthemum flower waste (Chrysanthemum sp.). International Bioprocessing Association Subject Conference (IBASC 2021) IOP Publishing IOP Conf. Series: Earth and Environmental Science 2022;963:012017. doi:10.1088/1755-1315/963/1/012017.