Algae as a Biofuel: A Promising Path to Sustainable Energy

Volume: 10 | Issue: 02 | Year 2024 | Subscription
International Journal of Plant Biotechnology
Received Date: 10/26/2024
Acceptance Date: 10/27/2024
Published On: 2024-10-29
First Page: 7
Last Page: 18

Journal Menu

By: Shreya Singh

Student, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India

Abstract

The increasing global demand for sustainable energy sources has intensified interest in biofuels, particularly those derived from algae. Algae-based biofuels are a promising alternative to traditional fossil fuels because of their high lipid and oil content, quick growth rates, and ability to flourish in a variety of settings. This review article examines the potential of algae as a biofuel source, focusing on recent advancements in algal cultivation, lipid extraction, and biofuel production technologies. The world’s energy demand appears to be increasing because of a burgeoning population and people’s desire for greater living standards. Diversification of biofuel sources has recently emerged as an essential energy concern. Among the numerous resources, algal biomass has attracted a lot of attention in recent years because of its relatively fast growth rate, great potential to reduce greenhouse gas emissions and climate change, and ability to store large amounts of lipids and carbohydrates. These adaptable organisms can also be employed to produce biofuels. This paper discusses the sustainability and practicality of algae as a future biofuel feedstock. This paper also provides an overview of the current state of biofuel generation from algal biomass and the progress that has been made thus far.

Loading

Citation:

How to cite this article: Shreya Singh, Algae as a Biofuel: A Promising Path to Sustainable Energy. International Journal of Plant Biotechnology. 2024; 10(02): 7-18p.

How to cite this URL: Shreya Singh, Algae as a Biofuel: A Promising Path to Sustainable Energy. International Journal of Plant Biotechnology. 2024; 10(02): 7-18p. Available from:https://journalspub.com/publication/ijpb/article=16002

Refrences:

  1. Adeniyi OM, Azimov U, Burluka A. Algae biofuel: current status and future applications. Renew Sustain Energy Rev. 2018;90:316–335. doi: 10.1016/j.rser.2018.03.067.
  2. Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renew Sustain Energy Rev. 2016;55:909–941. doi: 1016/j.rser.2015.11.026.
  3. Zabochnicka-Świątek M. Algae – Feedstock of the future. Arch Combust. 2010;30(3).
  4. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28(7):371–380. doi: 10.1016/j.tibtech.2010.04.004.
  5. Chisti Y, Biodiesel from microalgae, Biotechnology Advances 25.
  6. Macroalgae for biofuels production: Progress and perspectives Huihui Chen, Dong Zhou, Shicheng Zhang, Jianmin Chen. Renew Sustain Energy Rev. 47, 427-437 ,2015.
  7. Jin B, Duan P, Xu Y, Wang F, Fan Y. Co-liquefaction of micro-and macroalgae in subcritical water. Bioresour Technol. 2013;149:103–110.
  8. Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B. Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod. 2014;75:45–56.
  9. John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102(1):186–193.
  10. Rajkumar R, Yaakob Z, Takriff MS. Potential of the micro and macro algae for biofuel production: A brief review. Bioresources. 2014;9(1).
  11. Carlsson AS, Van beilen JB, Moller R, Clayton D. Micro and Macro Algae: Utility for Industrial Applications, Bowles, D. (ed.) Newbury: Cpl Press; 2007.
  12. Notoya M. Production of biofuel by macroalgae with preservation of marine resources and environment. In: Seaweeds and their Role in Globally Changing Environments, Cellular Origin, Life in Extreme Habitats and Astrobiology, Israel et al. (eds.), Springer Science+Business Media B.V. 2010;15:217–228. doi: 10.1007/978-90- 481-8569-6-13.
  13. Lüning K, Pang S. Mass cultivation of seaweeds: Current aspects and approaches. J Appl Phycol. 2003;15:115–119.
  14. Chan CX, Ho CL, Phang SM. Trends in seaweed research. Trends Plant Sci. 2006;11:165–166.
  15. Luo L, Voet EVD, Huppes G. An energy analysis of ethanol from cellulosic feedstock corn stover. Renew Sust Energy Rev. 2009;13(8):2003–2011.
  16. Goh CS, Lee KT. A visionary and conceptual macroalgae-based third generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sust Energy Rev. 2010;14:842–848.
  17. Aderhold D, Williams CJ, Edyvean RGJ. The removal of heavy metal ions by seaweeds and their derivatives. Bioresour Technol. 1996;58(1):1–6.
  18. John RP, Anisha GS, Nampoothiri KM, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol. 2011;102:186–193.
  19. Kraan S. Mass cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change. 2010. doi: 10.1007/s11027-010-9275-5.
  20. Maceiras R, Rodriguez M, Cancela A, Urrejola S, Sanchez A. Macroalgae: Raw material for biodiesel production. Appl Ener. 2011;88:3318–3323.
  21. Horn SJ, Aasen IM, Ostgaard K. Ethanol production from seaweed extract. J Ind Microbiol Biotechnol. 2000;25:249–254.
  22. Ross A, Jones JM, Kubacki ML, Bridgeman TG. Classification of macroalgae as fuel and its thermochemical behavior. Bioresour Technol. 2008;99:6494–6504.
  23. Wijffels R. Microalgae for production of bulk chemicals and biofuels. The 3rd Congress of Tsukuba 3E Forum, Tsukuba International Conference Centre, Tsukuba, Japan. 2009.
  24. Seo YB, Lee YW, Lee CH, You HC. Red algae and their use in paper making. Bioresour Technol. 2010;101:2549–2553.
  25. Lahaye M, Ray B. Cell wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides. Carbohydr Res. 1996;283:161–173.
  26. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol. 2011. doi: 10.1007/s10811-011-9705-0.
  27. Karunakaran S, Gurusamy R. Bioethanol production as renewable biofuel from rhodophytes feedstock. Int J Biol Biotechnol. 2011;2(2):94–99.
  28. Mody KH, Ghosh PK, Sana B, Gopalasamy G, Shukla AD, Eswaran K, et al. A process for integrated production of ethanol and seaweed sap from Kappaphycus alvarezii.Patent Filed Indian Application No. 1839/ DEL/ 2009 dated 07/09/09; WO 2011/027360A1 dated 10.03.11. 2009.
  29. Benjamin M. Methods and compositions for producing metabolic products for algae. US Patent No. 95,270,175. 2009.
  30. Uchida M, Murata M. Isolation of a lactic acid bacterium and yeast consortium from a fermented material of Ulva spp. (Chlorophyta). J Appl Microbiol. 2004;97:1297–1310.
  31. Dhargalkar VK, Pereira N. Seaweed: Promising plant of the millennium. Science and Culture. 2005;71(3-4):60–66.
  32. Chynoweth DP. Review of biomethane from marine biomass. Review of history, results and conclusions of the “US Marine Biomass Energy Program” (1968-1990). 2002;194.
  33. Kerner KN, Hanssen JF, Pedersen TA. Anaerobic digestion of waste sludges from the alginate extraction process. Bioresour Technol. 1991;37:17–24.
  34. Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW. Biochemical methane potential of biomass and waste feedstocks. Biomass & Bioenergy. 1993;5:95–111.
  35. Bird KT, Chynoweth DP, Jerger DE. Effects of marine algal proximate composition on methane yields. J Appl Phycol. 1990;2:207–213.
  36. Adams JM, Gallagher JA, Donnison IS. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol. 2009;21(5):569–574.
  37. Morand P, Carpentier B, Charlier RH, Maze J, Orlandini M, Plunkett BA, et al. Bioconversion of seaweeds. In: Seaweed Resources in Europe, Uses and Potential, Guiry, M. D, and Blunden, G. (eds.), Wiley, Chichester: Wiley; 1991. p. 432.
  38. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H. “Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol. 2012;103:180–185.
  39. Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH. Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrogen Energy. 2011;36:13997–14003.
  40. Shi X, Jung KW, Kim DH, Ahn YT, Shin HS. Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrogen Energy. 2011;36:5857–5864.
  41. Khan SA, Rashmi, Hussain MZ, Prasad S, Banerje UC. Prospects of biodiesel production from microalgae in India. Renew Sust Energy Rev. 2009;13:2361–2372.
  42. Xiong W, Li X, Xiang J, Wu Q. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl Microbiol Biotechnol. 2008;78:29–36.
  43. Williams PJLB, Laurens LML. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 2010;3:554–590.
  44. Tredici MR. Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution. Biofuels. 2010;1:143–162.
  45. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK. Microalgae as a sustainable energy source for biodiesel production: A review. Renew Sust Energy Rev. 2011;15:584–593.
  46. Huang G, Chen F, Wei D, Zhang X, Chen G. Biodiesel production by microalgal biotechnology. Appl Energy. 2010;87:38–46.
  47. Patil V, Tran KQ, Giselrod HR. Towards sustainable production of biofuels from microalgae. Int. J Mol Sci. 2008;9:1188–1195.
  48. Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel. Renew Sust Energy Rev. 2010;14:1312–1320.
  49. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sust Energy Rev. 2010;14(1):217–232.
  50. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294–306.
  51. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low cost photobioreactor. Biotechnol Bioeng. 2008;102(1):100–112.
  52. Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. In: 3rd Congress of the International Society for Appl Phycol. 2009.
  53. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK. Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). J Appl Phycol. 2011. doi: 10.1007/s10811-011-9705-0.
  54. Bligh EG, Dyer WJ. A rapid method for total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
  55. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol. 2011;102:50–57.
  56. Belarbi EH, Molina E, Chisti Y. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol. 2000;26:516–529.
  57. Harun R, Singh M, Forde Gareth M, Danquah Michael K. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energy Rev.2010;14:1037–1047.
  58. Popoola TOS, Yangomodou OD. Extraction, properties and utilization potentials of cassava seed oil. Biotechnology. 2006;5:38–41.
  59. Herrero M, Ibanez E, Senorans J, Cifuentes A. Pressurized liquid extracts from Spirulina platensis microalga: Determination of their antioxidant activity and preliminary analysis by micellar electrokinetic chromatography. J Chromatogr A. 2004;1047:195–203.
  60. Galloway JA, Koester KJ, Paasch BJ, Macosko CW. Effect of sample size on solvent extraction for detecting cocontinuity in polymer blends. Polymer 2004;45:423–428.