Perovskite Oxides: A Multifunctional Material Class for Solar-to-Fuel Energy Conversion

Volume: 11 | Issue: 01 | Year 2025 | Subscription
International journal of Thermodynamics and Chemical Kinetics
Received Date: 02/09/2025
Acceptance Date: 02/10/2025
Published On: 2025-02-13
First Page: 36
Last Page: 45

Journal Menu


By: Babatunde Alabi

Assistant Professor, Faculty of Chemistry, Obafemi Awolowo University.

Abstract

Harnessing concentrated solar energy for thermochemical water and carbon dioxide splitting presents a promising pathway to produce liquid hydrocarbon fuels as a sustainable alternative to fossil fuels. This process relies on advanced redox materials to facilitate efficient chemical reactions within thermochemical cycles. Traditionally, research has focused on binary oxides, particularly ceria, due to its redox capabilities. However, ceria’s high reduction temperature and limited tunability via extrinsic doping hinder its optimization for enhanced fuel production. In contrast, perovskite oxides have emerged as a highly adaptable material class, offering broader compositional flexibility to fine-tune reduction temperatures, oxygen exchange characteristics, and fuel yields. This review explores the fundamental structural and defect thermodynamics of perovskites, emphasizing the role of oxygen vacancies in catalytic reactions. Additionally, we discuss advanced strategies for discovering and optimizing new perovskite compositions for improved solar-driven fuel synthesis. Recent investigations highlight Fe, Mn, Co, and Cr-based perovskites, achieving fuel yields of several hundred mmol per gram per cycle. Ultimately, this review provides an in-depth analysis of the principles, progress, and future prospects of perovskite oxides in next-generation solar-to-fuel technology.

Loading

Citation:

How to cite this article: Babatunde Alabi, Perovskite Oxides: A Multifunctional Material Class for Solar-to-Fuel Energy Conversion. International journal of Thermodynamics and Chemical Kinetics. 2025; 11(01): 36-45p.

How to cite this URL: Babatunde Alabi, Perovskite Oxides: A Multifunctional Material Class for Solar-to-Fuel Energy Conversion. International journal of Thermodynamics and Chemical Kinetics. 2025; 11(01): 36-45p. Available from:https://journalspub.com/publication/ijtck/article=15110

Refrences:

  1. Intergovernmental Panel on Climate Change (IPCC). (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.

  2. IPCC Special Report on Emissions Scenarios. (2000). Edited by N. Nakicenovic and R. Swart. Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge, England.

  3. Organization of the Petroleum Exporting Countries (OPEC). (2015). Annual Statistical Bulletin 2015. OPEC Publication.

  4. Blankenship, R. E., et al. (2011). Comparing energy conversion efficiency in natural and artificial photosynthesis. Science, 332(6026), 805–809. https://doi.org/10.1126/science.1200137

  5. Lewis, N. S., & Nocera, D. G. (2006). Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15735. https://doi.org/10.1073/pnas.0605175103

  6. van de Krol, R., & Grätzel, M. (2012). Photoelectrochemical Hydrogen Production. Springer, US. https://doi.org/10.1007/978-1-4614-1380-6

  7. Romero, M., & Steinfeld, A. (2012). Concentrating solar thermal power and thermochemical fuels. Energy & Environmental Science, 5(11), 9234–9245. https://doi.org/10.1039/C2EE21594B

  8. Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chemical Reviews, 104(10), 4271–4302. https://doi.org/10.1021/cr020731c

  9. U.S. Geological Survey (USGS). (2017). Minerals Yearbook, 2017. Available at: USGS Website.

  10. Scheffe, J. R., & Steinfeld, A. (2014). Thermochemical hydrogen production using metal oxides: Challenges and opportunities. Materials Today, 17(7), 341–348. https://doi.org/10.1016/j.mattod.2014.04.013

  11. Centi, G., Quadrelli, E. A., & Perathoner, S. (2013). Catalysis for CO2 conversion: A key to sustainability and decarbonization. Energy & Environmental Science, 6(6), 1711–1731. https://doi.org/10.1039/C3EE41168J

  12. Agrafiotis, C., Roeb, M., & Sattler, C. (2015). Solar thermal hydrogen production: A review. Renewable & Sustainable Energy Reviews, 42, 254–285. https://doi.org/10.1016/j.rser.2014.09.045

  13. Smestad, G. P., & Steinfeld, A. (2012). Review of solar thermochemical processes for hydrogen production. Industrial & Engineering Chemistry Research, 51(37), 11828–11840. https://doi.org/10.1021/ie301160r

  14. Steinfeld, A. (2005). Solar thermochemical production of hydrogen: A review. Solar Energy, 78(5), 603–615. https://doi.org/10.1016/j.solener.2004.12.013

  15. Perkins, C., & Weimer, A. W. (2009). Solar-thermal production of renewable hydrogen. AIChE Journal, 55(12), 286–293. https://doi.org/10.1002/aic.11710

  16. Abanades, S., Charvin, P., Flamant, G., & Neveu, P. (2006). Screening of water-splitting thermochemical cycles for hydrogen production using concentrated solar energy. Energy, 31(14), 2469–2486. https://doi.org/10.1016/j.energy.2005.08.022

  17. Miller, J. E., Allendorf, M. D., Diver, R. B., Evans, L. R., Siegel, N. P., & Stuecker, J. N. (2008). Metal oxide-based thermochemical hydrogen production. Journal of Materials Science, 43(14), 4714–4728. https://doi.org/10.1007/s11041-008-0086-5

  18. Funk, J. E. (2001). Thermochemical hydrogen production. International Journal of Hydrogen Energy, 26(3), 185–190. https://doi.org/10.1016/S0360-3199(00)00135-9

  19. Kodama, T., & Gokon, N. (2007). Thermochemical hydrogen production methods using solar energy. Chemical Reviews, 107(10), 4048–4077. https://doi.org/10.1021/cr068389b

  20. Siegel, N. P., Miller, J. E., Ermanoski, I., Diver, R. B., & Stechel, E. B. (2013). Thermochemical hydrogen production using metal oxide redox cycles. Industrial & Engineering Chemistry Research, 52(9), 3276–3286. https://doi.org/10.1021/ie302946y

  21. Kim, J., Johnson, T. A., Miller, J. E., Stechel, E. B., & Maravelias, C. T. (2012). Design and technoeconomic analysis of solar thermochemical hydrogen production. Energy & Environmental Science, 5(10), 8417–8429. https://doi.org/10.1039/C2EE21761E

  22. Kolb, G. J., & Diver, R. B. (2008). Thermochemical hydrogen production technologies. Sandia National Laboratories Report, 2008-1900.

  23. Traynor, A. J., & Jensen, R. J. (2002). Hydrogen production via thermochemical processes. Industrial & Engineering Chemistry Research, 41(9), 1935–1939. https://doi.org/10.1021/ie010685b

  24. Bork, A. H., Kubicek, M., Struzik, M., & Rupp, J. L. M. (2015). Redox chemistry of perovskites for thermochemical energy conversion. Journal of Materials Chemistry A, 3(29), 15546–15557. https://doi.org/10.1039/C5TA02210B

  25. Perkins, C., & Weimer, A. W. (2004). Solar-thermal hydrogen production via metal oxide reduction. International Journal of Hydrogen Energy, 29(15), 1587–1599. https://doi.org/10.1016/j.ijhydene.2004.01.001

  26. Kodama, T. (2003). Solar thermochemical cycles for hydrogen production. Progress in Energy and Combustion Science, 29(6), 567–597. https://doi.org/10.1016/S0360-1285(03)00025-1

  27. Bilgen, E., Ducarroir, M., Foex, M., Sibieude, F., & Trombe, F. (1977). Solar-driven hydrogen production. International Journal of Hydrogen Energy, 2(3), 251–257. https://doi.org/10.1016/0360-3199(77)90028-1

  28. Kaneko, H., Gokon, N., Hasegawa, N., & Tamaura, Y. (2005). Solar thermal hydrogen production. Energy, 30(14), 2171–2178. https://doi.org/10.1016/j.energy.2004.11.027

  29. Tamaura, Y., Steinfeld, A., Kuhn, P., & Ehrensberger, K. (1995). Water splitting using metal oxide redox cycles. Energy, 20(4), 325–330. https://doi.org/10.1016/0360-5442(95)00012-J